Skip to main content

Uses of Microarray Platforms in Cancer

A Correlative Study Between Genomic Copy Number Changes and Their Expression at mRNA and Protein Levels

  • Protocol
Book cover Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 382))

Abstract

With the completion of the Human Genome Project, the microarray technology has evolved into a sophisticated platform by which complex diseases such as cancer, can be studied at the genome, transcriptome, and proteome levels. Here, various microarray platforms, namely comparative genomic hybridization, cDNA, oligonucleotide, and protein-based microarrays are exploited to study genomic copy-number changes in a human cancer cell line and correlate these genomic aberrations with their expression at mRNA and protein levels. The protocols described therein can be assimilated for the study of other human tissues including cancerous ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Platzer, P., Upender, M. B., Wilson, K., et al. (2002) Silence of chromosomal amplifications in colon cancer. Cancer Res. 62, 1134–1138.

    CAS  Google Scholar 

  2. Al-Mulla, F., Al-Maghrebi, M., and Varadharaj, G. (2003) Expressive genomic hybridisation: gene expression profiling at the cytogenetic level. Mol. Pathol. 56, 210–217.

    Article  CAS  Google Scholar 

  3. Chung, Y. J., Jonkers, J., Kitson, H., et al. (2004) A whole-genome mouse BAC microarray with 1-Mb resolution for analysis of DNA copy number changes by array comparative genomic hybridization. Genome Res. 14, 188–196.

    Article  CAS  Google Scholar 

  4. Pollack, J. R., Perou, C. M., Alizadeh, A. A., et al. (1999) Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat. Genet. 23, 41–46.

    Article  CAS  Google Scholar 

  5. Brennan, C., Zhang, Y., Leo, C., et al. (2004) High-resolution global profiling of genomic alterations with long oligonucleotide microarray. Cancer Res. 64, 4744–4748.

    Article  CAS  Google Scholar 

  6. Johnson, J. M., Edwards, S., Shoemaker, D., and Schadt, E. E. (2005) Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments. Trends Genet. 21, 93–102.

    Article  CAS  Google Scholar 

  7. Karaman, M. W., Groshen, S., Lee, C. C., Pike, B. L., and Hacia, J. G. (2005) Comparisons of substitution, insertion and deletion probes for resequencing and mutational analysis using oligonucleotide microarrays. Nucleic Acids Res. 33, E33.

    Article  Google Scholar 

  8. Kimura, N., Nagasaka, T., Murakami, J., et al. (2005) Methylation profiles of genes utilizing newly developed CpG island methylation microarray on colorectal cancer patients. Nucleic Acids Res. 33, E46.

    Article  Google Scholar 

  9. Fehlbaum, P., Guihal, C., Bracco, L., and Cochet, O. (2005) A microarray configuration to quantify expression levels and relative abundance of splice variants. Nucleic Acids Res. 33, E47.

    Article  Google Scholar 

  10. Glokler, J. and Angenendt, P. (2003) Protein and antibody microarray technology. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 797, 229–240.

    Article  CAS  Google Scholar 

  11. Quinn, L. A., Moore, G. E., Morgan, R. T., and Woods, L. K. (1979) Cell lines from human colon carcinoma with unusual cell products, double min, and homogeneously staining regions. Cancer Res. 39, 4914–4924.

    CAS  Google Scholar 

  12. Auer, H., Lyianarachchi, S., Newsom, D., Klisovic, M. I., Marcucci, G., and Kornacker, K. (2003) Chipping away at the chip bias: RNA degradation in microarray analysis. Nat. Genet. 35, 292–293.

    Article  CAS  Google Scholar 

  13. Carter, S. L., Eklund, A. C., Mecham, B. H., Kohane, I. S., and Szallasi, Z. (2005) Redefinition of Affymetrix probe sets by sequence overlap with cDNA microarray probes reduces cross-platform inconsistencies in cancer-associated gene expression measurements. BMC Bioinformatics 6, 107.

    Article  Google Scholar 

  14. Mecham, B. H., Klus, G. T., Strovel, J., et al. (2004) Sequence-matched probes produce increased cross-platform consistency and more reproducible biological results in microarray-based gene expression measurements. Nucleic Acids Res. 32, E74.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Al-Mulla, F., Al-Tamimi, R. (2007). Uses of Microarray Platforms in Cancer. In: Rampal, J.B. (eds) Microarrays. Methods in Molecular Biology, vol 382. Humana Press. https://doi.org/10.1007/978-1-59745-304-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-304-2_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-944-4

  • Online ISBN: 978-1-59745-304-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics