Microarrays pp 133-163 | Cite as

Construction of Oligonucleotide Microarrays (Biochip) Using Heterobifunctional Reagents

  • Jyoti Choithani
  • B. Vaijayanthi
  • Pradeep Kumar
  • Kailash Chand Gupta
Part of the Methods in Molecular Biology™ book series (MIMB, volume 381)


A number of hetero- and homobifunctional reagents have been reported to immobilize biomolecules on a variety of supports. However, efforts are on to search for a method, which is relatively simple, involving minimum of steps, cost effective, easy to reproduce, and that produces stable oligonucleotide arrays. Two new reagents, viz., [N-(2-trifluoroethanesulfonatoethyl)-N-(methyl)- triethoxysilylpropyl-3-amine], and [N-(3-trifluoroethanesulfonyloxypropyl)anthraquinone-2- carboxamide] have been designed considering the above points. These reagents contain different functional groups at their two ends. In [N-(2-trifluoroethanesulfonatoethyl)-N-(methyl)- triethoxysilylpropyl-3-amine], one end (triethoxysilyl) is capable of binding to the virgin glass surface and the other one consists of trifluoroethanesulfonate (tresyl) function specific toward aminoalkyl and mercaptoalkyl functionalities, which are easy to introduce at the 3′- or 5′-end of oligonucleotides. Likewise, in [N-(3-trifluoroethanesulfonyloxypropyl)anthraquinone-2- carboxamide], one end consists of photoactivatable moiety (anthraquinone) capable of reacting to a C-H containing surface and the tresyl function at the other end reacts specifically with aminoalkyl and mercaptoalkyl functionalities in modified oligonucleotides. These reagents have successfully been utilized to construct a number of oligonucleotide arrays and subsequently used for the detection of mismatches.

Key Words

Glass surface heterobifunctional reagents immobilization microarray NTMTA NTPAC oligonucleotides 


  1. 1.
    Pirrung, M. C. (2002) How to make DNA chip. Angew. Chem. Int. Ed. 41, 1276–1289.CrossRefGoogle Scholar
  2. 2.
    Seliger, H., Hinz, M., and Happ, E. (2003) Arrays of immobilized oligonucleotides—Contributions to nucleic acids technology. Curr. Pharm. Biotechnol. 4, 379–395.CrossRefGoogle Scholar
  3. 3.
    Ramsay, G. (1998) DNA chips: state of the art. Nat. Biotech. 16, 40–44.CrossRefGoogle Scholar
  4. 4.
    Nielsen, P. S., Ohlsson, H., Alsbo, C., Andersen, M. S., and Kauppinen, S. (2005) Expression profiling by oligonucleotide microarrays spotted on coated polymer slides. J. Biotech. 116, 125–134.CrossRefGoogle Scholar
  5. 5.
    Gerhold, D., Rushmore, T., and Caskey, C. T. (1999) DNA chips: promising toys have become powerful tools. Trends Biochem. Sci. 24, 168–173.CrossRefGoogle Scholar
  6. 6.
    Van Ness, J., Kalbfleisch, S., Petrie, C. R., Reed, M. W., Tabone, J. C., and Vermeulen, N. M. (1991) A versatile solid support system for oligodeoxynucleotide probe-based hybridization assays. Nucleic Acids Res. 19, 3345–3350.CrossRefGoogle Scholar
  7. 7.
    Beier, M. and Hoheisel, J. D. (1999) Versatile derivatisation of solid support media for covalent bonding on DNA-microchips. Nucleic Acids Res. 27, 1970–1977.CrossRefGoogle Scholar
  8. 8.
    Halliwell, C. M. and Cass, A. E. G. (2001) A factorial analysis of silanization conditions for the immobilization of oligonucleotides on glass surfaces. Anal. Chem. 73, 2476–2483.CrossRefGoogle Scholar
  9. 9.
    Britcher, I. G., Kehoe, D. C., Matisons, J. G., Smart, R. S. C., and Swincer, A. G. (1993) Silicones on glass surfaces. 2. Coupling agent analogs. Langmuir 9, 1609–1613.CrossRefGoogle Scholar
  10. 10.
    Proudnikov, D., Timofeev, E., and Mirzabekov, A. (1998) Immobilization of DNA in Polyacrylamide gel for the Manufacture of DNA and DNA-oligonucleotide microchips. Anal. Biochem. 259, 34–41.CrossRefGoogle Scholar
  11. 11.
    Matson, R. S., Rampal, J., Pentoney, S. L., Anderson, P. D., and Coassin, P. (1995) Biopolymer synthesis on polypropylene supports: oligonucleotide arrays. Anal. Biochem. 224, 110–116.CrossRefGoogle Scholar
  12. 12.
    Dequaire, M. and Heller, A. (2002) Screen printing of nucleic acid detecting carbon electrodes. Anal. Chem. 74, 4370–4377.CrossRefGoogle Scholar
  13. 13.
    Fixe, F., Dufva, M., Telleman, P., and Christensen, C. B. V. (2004) Funtionalization of poly(methyl methacrylate) (PMMA) as a substrate for DNA microarrays. Nucleic Acids Res. 32, E9.CrossRefGoogle Scholar
  14. 14.
    Strother, T., Cai, W., Zhao, X., Hamers, R. J., and Smith, L. M. (2000) Synthesis and characterization of DNA-modified Silicon(111) surfaces. J. Am. Chem. Soc. 122, 1205–1209.CrossRefGoogle Scholar
  15. 15.
    Chrisey, I. A., O’Ferrall, C. E., Spargo, B. J., Dulcey, C. S., and Calvert, J. M., (1996) Fabrication of patterned DNA surfaces. Nucleic Acids Res. 24, 3040–3047.CrossRefGoogle Scholar
  16. 16.
    Healey, B. G., Matson, R. S., and Walt, D. R. (1997) Fiberoptic DNA sensor array capable of detecting point mutations. Anal. Biochem. 251, 270–279.CrossRefGoogle Scholar
  17. 17.
    Steel, A. B., Levicky, R. L., Herne, T. M., and Tarlov, M. J. (2000) Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly. Biophys. J. 79, 975–981.CrossRefGoogle Scholar
  18. 18.
    Csáki, A., Möller, R., Straube, W., Köhler, J. M., and Fritzsche, W. (2001) DNA monolayer on gold substrates characterized by nanoparticle labeling and scanning force microscopy. Nucleic Acids Res. 29, E81.CrossRefGoogle Scholar
  19. 19.
    Cha, T.-W., Boiadjiev, V., Lozano, J., Yang, H., and Zhu, X.-Y. (2002) Immobilization of oligonucleotide on poly(ethylene glycol) brush-coated Si surfaces. Anal. Biochem. 311, 27–32.CrossRefGoogle Scholar
  20. 20.
    Southern, E. M., Maskos, U., and Elder, J. K. (1992) Analyzing and comparing nucleic acid sequences by hybridization to arrays of oligonucleotides: evaluation using experimental models. Genomics 13, 1008–1017.CrossRefGoogle Scholar
  21. 21.
    Fodor, S. P. A., Read, J. L., Pirrung, M. C., Stryer, L., Lu, A. T., and Solas, D. (1991) Light directed spatially addressable parallel chemical synthesis. Science 251, 767–773.CrossRefGoogle Scholar
  22. 22.
    Pease, A. C., Solas, D., Sullivan, E. J., Cronin, M. T., Holmes, C. P., and Fodor, S. P. (1994) Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl. Acad. Sci. USA 91, 5022–5026.CrossRefGoogle Scholar
  23. 23.
    Yong-Sung, C., Do-Kyun, K., and Young-Soo, K. (2002) Development of a new DNA chip microarray by hydrophobic interaction. Colloids and Surfaces A 201, 261–264.CrossRefGoogle Scholar
  24. 24.
    Zammatteo, N., Jeanmart, L., Hamels, S., et al. (2000) Comparison between different strategies of covalent attachment of DNA to glass surfaces to build DNA microarrays. Anal. Biochem. 280, 143–150.CrossRefGoogle Scholar
  25. 25.
    Kumar, A., Larsson, O., Pardi, D., and Liang, Z. (2000) Silanized nucleic acids: a general platform for DNA immobilization. Nucleic Acids Res. 28, E71.CrossRefGoogle Scholar
  26. 26.
    Moller, R., Csaki, A., Kohler, A. M., and Fritzsche, W. (2000) DNA probes on chip surfaces studied by scanning force microscopy using specific binding of colloidal gold. Nucleic Acids Res. 28, E91.CrossRefGoogle Scholar
  27. 27.
    Lamture, J. B., Beattie, K. L., Burke, B. E., et al. (1994) Direct detection of nucleic acid hybridization on the surface of a charge coupled device. Nucleic Acids Res. 22, 2121–2125.CrossRefGoogle Scholar
  28. 28.
    Chrisey, L. A., Lee, G. U., and O’Ferrall, C. E. (1996) Covalent attachment of synthetic DNA to self-assembled monolayer films. Nucleic Acids Res. 24, 3031–3039.CrossRefGoogle Scholar
  29. 29.
    Strother, T., Hamers, R. J., and Smith, L. M. (2000) Covalent attachment of oligodeoxyribonucleotides to amine-modified Si(001) surfaces. Nucleic Acids Res. 28, 3535–3541.CrossRefGoogle Scholar
  30. 30.
    Kumar, P., Choithani, J., and Gupta, K. C. (2004) Construction of oligonucleotide arrays on a glass surface using a heterobifunctional reagent, N-(2-trifluoroethanesulfonatoethyl)-N-(methyl)-triethoxysilylpropyl-3-amine (NTMTA). Nucleic Acids Res. 32, E80.CrossRefGoogle Scholar
  31. 31.
    Kumar, P., Agrawal, S. K., Misra, A., and Gupta, K. C. (2004) A new heterobifunctional reagent for immobilization of biomolecules on glass surface. BioMed. Chem. Lett. 14, 1097–1099.CrossRefGoogle Scholar
  32. 32.
    Koch, T., Jacobsen, N., Fensholdt, J., Boas, U., Fenger, M., and Jakobsen, M. H. (2000) Photochemical immobilization of anthraquinone conjugated oligonucleotides and PCR amplicons on solid surfaces. Bioconjug. Chem. 11, 474–483.CrossRefGoogle Scholar
  33. 33.
    Kumar, P., Gupta, K. C., and Gandhi, R. P. (2003) UV light-aided immobilization of oligonucleotides on glass surface using N-(3-trifluoroethanesulfonyloxypropyl) anthaquinone-2-carboxamide (NTPAC) and detection of single nucleotide mismatch. J. Indian Chem. Soc. 80, 1193–1199.Google Scholar
  34. 34.
    Yaqub, M. and Guire, P. (1974) Covalent immobilization of L-asparaginase with a photochemical reagent. J. Biomed. Mater. Res. 8, 291–297.CrossRefGoogle Scholar
  35. 35.
    Wilson, D. F., Miyata, Y., Erecinska, M., and Vanerkooi, J. M. (1975) An aryl azide suitable for photoaffinity labeling of amine groups in proteins. Arch. Biochem. Biophys. 17, 104–107.CrossRefGoogle Scholar
  36. 36.
    Sigrist, H., Gao, H., and Wegmuller, B. (1992) Light-dependent, covalent immobilization of biomolecules on “inert” surfaces. Biotechnology 10, 1026–1028CrossRefGoogle Scholar
  37. 37.
    Gaur, R. K., Sharma, P., and Gupta, K. C. (1989) A simple method for the introduction of thiol group at 5′-termini of oligodeoxynucleotides. Nucleic Acids Res. 17, 4404.CrossRefGoogle Scholar
  38. 38.
    Gupta, K. C., Sharma, P., Kumar, P., and Sathyanarayana, S. (1991) A general method for the synthesis of 3′-sulfhydryl and phosphate group containing oligonucleotides. Nucleic Acids Res. 19, 3019–3025.CrossRefGoogle Scholar
  39. 39.
    Kumar, P., Bhatia, D., Rastogi, R. C., and Gupta, K. C. (1996) Solid phase synthesis and purification of 5′-mercaptoalkylated oligonucleotides. BioMed. Chem. Lett. 6, 683–688.CrossRefGoogle Scholar
  40. 40.
    Agrawal, S., Christodoulou, C., and Gait, M. J. (1986) Efficient methods for attaching non-radioactive labels to the 5′ ends of synthetic oligodeoxyribonucleotides. Nucleic Acids Res. 14, 6227–6245.CrossRefGoogle Scholar
  41. 41.
    Connolly, B. A. (1987) The synthesis of oligonucleotides containing a primary amino group at the 5′-terminus. Nucleic Acids Res. 15, 3131–3139.CrossRefGoogle Scholar
  42. 42.
    Beaucage, S. L. and Iyer, R. P. (1993) The functionalization of oligonucleotides via phosphoramidite derivatives. Tetrahedron 49, 1925–1963.CrossRefGoogle Scholar
  43. 43.
    Beaucage, S. L. and Iyer, R. P. (1992) Advances in the synthesis of oligonucleotides by the phosphoramidite approach. Tetrahedron 48, 2223–2311.CrossRefGoogle Scholar
  44. 44.
    Gryaznov, S. M. and Letsinger, R. L. (1993) Anchor for one step release of 3′-aminooligonucleotides from a solid support. Tetrahedron Lett. 34, 1261–1264.CrossRefGoogle Scholar
  45. 45.
    Agrawal, S. (ed.) (1994) Protocols for Oligonucleotides and Analogs, Synthesis and Properties. Humana Press, Totowa, NJ, pp. 465–496.Google Scholar
  46. 46.
    Truffert, J. C., Lorthioir, O., Asseline, U., Thuong, N. T., and Brack, A. (1994) On-line solid phase synthesis of oligonucleotide-peptide hybrids using silica supports. Tetrahedron Lett. 35, 2353–2356.CrossRefGoogle Scholar
  47. 47.
    Atkinson, T. and Smith, M. (1984) Oligonucleotide synthesis, in A Practical Approach, (Gait M. J., ed.), IRL Press, Oxford, UK, pp. 35–81.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Jyoti Choithani
    • 1
  • B. Vaijayanthi
    • 2
  • Pradeep Kumar
    • 1
  • Kailash Chand Gupta
    • 1
  1. 1.Nucleic Acids Research LaboratoryInstitute of Genomics and Integrative BiologyDelhiIndia
  2. 2.Department of Chemistry, Gargi CollegeUniversity of DelhiDelhiIndia

Personalised recommendations