Advertisement

Microarrays pp 59-92 | Cite as

Nonfouling Surfaces

A Review of Principles and Applications for Microarray Capture Assay Designs
  • Ping Gong
  • David W. Grainger
Part of the Methods in Molecular Biology™ book series (MIMB, volume 381)

Abstract

Microarray technology, like many other surface-capture diagnostic methods, relies on fidelity of affinity interactions between a surface-bound probe (e.g., nucleic acid or antibody) and its target in the sample milieu to produce an assay signal specific to analyte. These interfacial interactions produce the assay result with the associated assay requirements for sensitivity, specificity, reproducibility, and ease-of-use. For surface-capture assays, surface properties play a critical role in this performance. Microarray surfaces are routinely immersed into aqueous target solutions of varying complexity, from simple saline or buffer solutions to serum, tissue, food, or microbiological lysates involving thousands of different solutes. The surface chemistry must not only be capable of immobilizing probes at high density in microscale patterned spots, retaining probe affinity for target within these spots, reducing target capture outside of these spots, but also be efficient at eliminating nontarget capture any where else on the surface. Historically, the development of surface chemistry with these specific “nonfouling” properties has been an intense interest for bioassays, with many types of architectures, molecular compositions, and performance capabilities across many different surface-capture assays. The unique environment of the bioassay, including the long-standing problems associated with high concentrations of “nontarget” proteins and other surface-active biomolecules in the assay milieu, has proven to be quite challenging to surface chemistry performance. Microarray technology designs with microspotted patterns must address these problems in these challenging dimensions in order to improve signal:noise ratios for captured target signals on surfaces. This chapter reviews principles of protein-surface interfacial physical chemistry, protein adsorption as a source of assay noise, and various approaches to control this interface in the context of surface-capture assay fabrication andimproving assay performance from complex milieu. Practical methods to modify surfaces for biological assay are presented. Polymer substrate coating methods, including “grafting from” and “grafting to” strategies, polymer brushes, and alternative surface modification methods are reviewed. Methods to assess biological “fouling” in the bioassay format are also discussed.

Key Word

Bioassay diagnostics microarrays nonspecific binding PEG polyethylene glycol protein adsorption surface chemistry surface immobilization 

References

  1. 1.
    Hoffman, A. S. (1999) Nonfouling surface technologies. J. Biomat. Sci. Polym. Ed. 10, 1011–1014.Google Scholar
  2. 2.
    Andrade, J. D., Nagaoka, S., Cooper, S., Okano, T., and Kim, S. W. (1987) Surfaces and blood compatibility. Current hypotheses. ASAIO Trans. 33, 75–84.Google Scholar
  3. 3.
    Merrill, E. W. (1987) Distinctions and correspondences among surfaces contacting blood. Ann. NY Acad. Sci. 516, 196–203.Google Scholar
  4. 4.
    Malmsten, M. (ed.) (2003) Biopolymers at Interfaces, 2nd ed., Surfactant Science Series., vol. 110, Marcel-Dekkar, NY.Google Scholar
  5. 5.
    Kingshott, P. and Griesser, H. J. (1999) Surfaces that resist bioadhesion. Curr. Opin. Solid St. M. 4, 403–412.Google Scholar
  6. 6.
    Vogler, E. A. (2001) On the origins of water wetting terminology, in Water in Biomaterials Surface Science, (Morra, M., ed.), John Wiley & Sons Ltd., West Sussex, UK, pp. 149–182.Google Scholar
  7. 7.
    Garcia, C. A., Hummer, G., and Soumpasis, D. M. (2001) Theoretical and computational methods of biomolecular hydration, in Water in Biomaterials Surface Science, (Morra, M., ed.), John Wiley & Sons Ltd., West Sussex, UK, pp. 25–52.Google Scholar
  8. 8.
    Norde, W. (2003) Driving forces for protein adsorption at solid surfaces, in Biopolymers at Interfaces, 2nd ed., vol. 110, Surfactant Science Series (Malmsten, M., ed.), Marcel-Dekkar, NY, pp. 21–43.Google Scholar
  9. 9.
    Roth, C. M. and Lenhoff, A. M. (2003) Quantitative modeling of protein adsorption, in Biopolymers at Interfaces, 2nd ed., vol. 110, Surfactant Science Series (Malmsten, M., ed.), Marcel-Dekkar, NY, pp. 71–94.Google Scholar
  10. 10.
    Ramsden, J. J. (2003) Protein adsorption kinetics, in Biopolymers at Interfaces, 2nd ed., vol. 110, Surfactant Science Series (Malmsten, M., ed.), Marcel-Dekkar, NY, pp. 199–220.Google Scholar
  11. 11.
    Britt, D. W., Jogikalmath, G., and Hlady, V. (2003) Protein interactions with monolayers at the air-water-interface, in Biopolymers at interfaces, 2nd ed., vol. 110, Surfactant Science Series (Malmsten, M., ed.), Marcel-Dekkar, NY, pp. 415–434.Google Scholar
  12. 12.
    Horbett, T. A. and Brash, J. L. (1987) “Proteins at interfaces: current issues and future prospects,” vol. 343 (Horbett, T. A. and Brash, J. L. ed.), ACS Sym. Ser. pp. 1–33Google Scholar
  13. 13.
    Brash, J. L. and Horbett, T. A. (1995) An overview in Proteins at Interfaces. vol. 602 (Horbett, T. A. and Brash, J. L. ed.), ACS Sym. Ser. pp. 1–23.Google Scholar
  14. 14.
    Andrade, J. D. (ed.) (1985) Surface and Interfacial Aspects of Biomedical Polymers, Plenum Press, New York.Google Scholar
  15. 15.
    Coleman, D. L., King, R. N., and Andrade, J. D. (1974) The foreign body reaction: a chronic inflammatory response. J. Biomed. Mater. Res. 8, 199–211.Google Scholar
  16. 16.
    Andrade, J. D. and Hlady, V. (1986) Protein adsorption and materials biocompatibility: a tutorial review and suggested hypotheses. Adv. Polym. Sci. 79, 1–63.Google Scholar
  17. 17.
    Vogler, E. A. (1999) Water and the acute biological response to surfaces. J. Biomat. Sci. Polym. Ed. 10, 1015–1045.Google Scholar
  18. 18.
    Israelachvili, J. and Wennerstrom, H. (1996) Role of hydration and water structure in biological and colloidal interactions. Nature (London) 379, 219–225.Google Scholar
  19. 19.
    Israelachvili, J. N. (2000) Short-range and long-range forces between hydrophilic surfaces and biopolymers in aqueous solutions. Hydrocolloids, (based on presentations at [the] Osaka City University International Symposium 98, Joint Meeting with the 4th International Conference on Hydrocolloids), Osaka, October 4–10, 1998 vol. 1 pp. 3–21.Google Scholar
  20. 20.
    Vogler, E. A. (1998) Structure and reactivity of water at biomaterial surfaces. Adv. Colloid Interface Sci. 74, 69–117.Google Scholar
  21. 21.
    Andrade, J. D., Hlady, V., Feng, L., and Tingey, K. (1996) Proteins at interfaces: principles, problems, and potential. Bioprocess Technol. 23, 19–55.Google Scholar
  22. 22.
    Bhaduri, A. and Das, K. P. (1999) Proteins at solid/water interface—a review. J. Disper. Sci. Technol. 20, 1097–1123.Google Scholar
  23. 23.
    Elwing, H., Askenda, A., Ivarsson, B., Nilsson, U., Welin, S., and Lundstroem, I. (1987) Protein adsorption on solid surfaces: physical studies and biological model reactions. ACS Sym. Ser. 343, 468–489.Google Scholar
  24. 24.
    Greig, R. G. and Brooks, D. E. (1981) Protein adsorption. J. Colloid Interf. Sci. 83, 661–662.Google Scholar
  25. 25.
    Hlady, V. and Buijs, J. (1996) Protein adsorption on solid surfaces. Curr. Opin. Biotechnol. 7, 72–77.Google Scholar
  26. 26.
    Kleijn, M. and Norde, W. (1995) The adsorption of proteins from aqueous solution on solid surfaces. Heterogen. Chem. Rev. 2, 157–172.Google Scholar
  27. 27.
    Malmsten, M. (2000) Protein adsorption at the solid-liquid interface in Protein Architecture, (Lvov, Y. and Moehwald, H., ed.), Marcel Dekker Inc., New York, NY, pp. 1–23.Google Scholar
  28. 28.
    Nakanishi, K., Sakiyama, T., and Imamura, K. (2001) On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J. Biosci. Bioeng. 91, 233–244.Google Scholar
  29. 29.
    Norde, W. (1980) Adsorption of proteins at solid surfaces. Polym. Sci. Technol. (Plenum) 12B, 801–825.Google Scholar
  30. 30.
    Norde, W. (2000) Proteins at solid surfaces, in Physical Chemistry at Biological Interfaces, (Baszkin, A. and Norde, W., ed.), Marcel Dekker Inc., New York, NY, pp. 115–135.Google Scholar
  31. 31.
    Ramsden, J. J. (1997) Protein adsorption at the solid/liquid interface. Conference of the Colloid Chemistry: in Memoriam of Aladar Buzagh, Procceding 7th, Eger, Hungary, September 23–26, 1996, pp. 148–151.Google Scholar
  32. 32.
    Wahlgren, M. and Arnebrant, T. (1991) Protein adsorption to solid surfaces. Trends Biotechnol. 9, 201–208.Google Scholar
  33. 33.
    LaPorte, R. J., (ed.) (1997) Hydrophilic Polymer Coatings for Medical Devices: Structure/Properties, Development, Manufacture and Applications, Technomic, Lancaster, PA.Google Scholar
  34. 34.
    Mrksich, M. and Whitesides, G. M. (1997) Using self-assembled monolayers that present oligo(ethylene glycol) groups to control the interactions of proteins with surfaces. ACS Sym. Ser. 680, 361–373.Google Scholar
  35. 35.
    Andrade, J. D., Hlady, V., and Jeon, S. I. (1996) Poly(ethylene oxide) and protein resistance. Principles, problems, and possibilities. Adv. Chem. Ser. 248, 51–59.Google Scholar
  36. 36.
    Lee, J. H., Lee, H. B., and Andrade, J. D. (1995) Blood compatibility of polyethylene oxide surfaces. Prog. Polym. Sci. 20, 1043–1079.Google Scholar
  37. 37.
    Needham, D., Hristova, K., McIntosh, T. J., Dewhirst, M., Wu, N., and Lasic, D. D. (1992) Polymer-grafted liposomes: physical basis for the stealth property. J. Lipos. Res. 2, 411–430.Google Scholar
  38. 38.
    Castner, D. G. and Ratner, B. D. (2002) Biomedical surface science: foundations to frontiers. Surf. Sci. 500, 28–60.Google Scholar
  39. 39.
    Harris, J. M. (ed.) (1992) Poly(Ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications, Plenum Press, New York, NY.Google Scholar
  40. 40.
    Harris, J. M. and Zalipsky, S. (eds.) (1997) Polyethylene Glycol: Chemistry and Biological Applications, ACS, Washington, DC.Google Scholar
  41. 41.
    Lim, K. and Herron, J. N. (1992) Molecular simulation of protein-PEG interaction, in Poly(ethylene Glycol) Chemistry, (Harris, M., ed.), Plenum Press, New York, NY, pp. 29–56.Google Scholar
  42. 42.
    Valentini, M., Napoli, A., Tirelli, N., and Hubbell, J. A. (2003) Precise determination of the hydrophobic/hydrophilic junction in polymeric vesicles. Langmuir 19, 4852–4855.Google Scholar
  43. 43.
    Harris, J. M. and Chess, R. B. (2003) Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2, 214–221.Google Scholar
  44. 44.
    Graham, N. B. (1992) Poly(ethylene glycol) gels and drug delivery, in Poly(ethylene Glycol) Chemistry, (Harris, M., ed.), Plenum Press, New York, NY, pp. 263–281.Google Scholar
  45. 45.
    Kingshott, P., Wei, J., Bagge-Ravn, D., Gadegaard, N., and Gram, L. (2003) Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion. Langmuir 19, 6912–6921.Google Scholar
  46. 46.
    Caldwell, K. D. (1997) Surface modifications with adsorbed poly(ethylene oxide)-based block copolymers. Physical characteristics and biological use. ACS Symp. Ser. 680, 400–419.Google Scholar
  47. 47.
    Bearinger, J. P., Terrettaz, S., Michel, R., et al. (2003) Chemisorbed poly(propylene sulphide)-based copolymers resist biomolecular interactions. Nat. Mater. 2, 259–264.Google Scholar
  48. 48.
    Li, J.-T., Carlsson, J., Huang, S.-C., and Caldwell, K. D. (1996) Adsorption of poly(ethylene oxide)-containing block copolymers. A route to protein resistance. Adv. Chem. Ser. 248, 61–78.Google Scholar
  49. 49.
    Merrill, E. W. and Salzman, E. W. (1983) Polyethylene oxide as a biomaterial. ASAIO J. (1978–1985) 6, 60–64.Google Scholar
  50. 50.
    Jeon, S. I., Lee, J. H., Andrade, J. D., and De Gennes, P. G. (1991) Protein-surface interactions in the presence of polyethylene oxide. I. Simplified theory. J. Colloid Interf. Sci. 142, 149–158.Google Scholar
  51. 51.
    Jeon, S. I. and Andrade, J. D. (1991) Protein-surface interactions in the presence of polyethylene oxide. II. Effect of protein size. J. Colloid Interf. Sci. 142, 159–166.Google Scholar
  52. 52.
    Halperin, A. (1999) Polymer brushes that resist adsorption of model proteins: design parameters. Langmuir 15, 2525–2533.Google Scholar
  53. 53.
    Szleifer, I. (1997) Protein adsorption on surfaces with grafted polymers: a theoretical approach. Biophys. J. 72, 595–612.Google Scholar
  54. 54.
    De Gennes, P. G. (1979) Scaling Concepts in Polymer Physics, Cornell Univ. Press, Ithaca, NY.Google Scholar
  55. 55.
    McPherson, T., Kidane, A., Szleifer, I., and Park, K. (1998) Prevention of protein adsorption by tethered poly(ethylene oxide) layers: experiments and single-chain mean-field analysis. Langmuir 14, 176–186.Google Scholar
  56. 56.
    Satulovsky, J., Carignano, M. A., and Szleifer, I. (2000) Kinetic and thermodynamic control of protein adsorption. Proc. Natl. Acad. Sci. USA 97, 9037–9041.Google Scholar
  57. 57.
    Fang, F. and Szleifer, I. (2002) Effect of molecular structure on the adsorption of protein on surfaces with grafted polymers. Langmuir 18, 5497–5510.Google Scholar
  58. 58.
    Emoto, K., Harris, J. M., and Van Alstine, J. M. (1996) Grafting poly(ethylene glycol) epoxide to amino-derivatized quartz: effect of temperature and pH on grafting density. Anal. Chem. 68, 3751–3757.Google Scholar
  59. 59.
    Malmsten, M., Emoto, K., and Van Alstine, J. M. (1998) Effect of chain density on inhibition of protein adsorption by poly(ethylene glycol) based coatings. J. Colloid Interface Sci. 202, 507–517.Google Scholar
  60. 60.
    Efremova, N. V., Sheth, S. R., and Leckband, D. E. (2001) Protein-induced changes in poly(ethylene glycol) brushes: molecular weight and temperature dependence. Langmuir 17, 7628–7636.Google Scholar
  61. 61.
    Papra, A., Gadegaard, N., and Larsen, N. B. (2001) Characterization of ultrathin poly(ethylene glycol) monolayers on silicon substrates. Langmuir 17, 1457–1460.Google Scholar
  62. 62.
    Raviv, U., Frey, J., Sak, R., Laurat, P., Tadmor, R., and Klein, J. (2002) Properties and interactions of physigrafted end-functionalized poly(ethylene glycol) layers. Langmuir 18, 7482–7495.Google Scholar
  63. 63.
    Zhao, B. and Brittain, W. J. (2000) Polymer brushes: surface-immobilized macromolecules. Prog. Polym. Sci. 25, 677–710.Google Scholar
  64. 64.
    De Gennes, P. G. (1976) Scaling theory of polymer adsorption. J. Phys. Paris 37, 1445–1452.Google Scholar
  65. 65.
    De Gennes, P. G. (1980) Conformations of polymers attached to an interface. Macromolecules 13, 1069–1075.Google Scholar
  66. 66.
    Alexander, S. (1977) Adsorption of chain molecules with a polar head: a scaling description. J. Phys. Paris 38, 983–987.Google Scholar
  67. 67.
    Halperin, A. (1994) On polymer brushes and biology: an introduction. NATO ASI Ser. B: Phys. 323, 33–56.Google Scholar
  68. 68.
    Stokes, R. J. and Evans, D. F. (eds.) (1996) Fundamentals of Interfacial Engineering, VCH, New York, NY.Google Scholar
  69. 69.
    Kingshott, P., Thissen, H., and Griesser, H. J. (2002) Effects of cloud-point grafting, chain length, and density of peg layers on competitive adsorption of ocular proteins. Biomaterials 23, 2043–2056.Google Scholar
  70. 70.
    Sofia, S. J., Premnath, V., and Merrill, E. W. (1998) Poly(ethylene oxide) grafted to silicon surfaces: grafting density and protein adsorption. Macromolecules 31, 5059–5070.Google Scholar
  71. 71.
    Chapman, R. G., Ostuni, E., Liang, M. N., et al. (2001) Polymeric thin films that resist the adsorption of proteins and the adhesion of bacteria. Langmuir 17, 1225–1233.Google Scholar
  72. 72.
    Efremova, N. V., Huang, Y., Peppas, N. A., and Leckband, D. E. (2002) Direct measurement of interactions between tethered polyethylene glycol chains and adsorbed mucin layers. Langmuir 18, 836–845.Google Scholar
  73. 73.
    Bearinger, J. P., Castner, D. G., Golledge, S. L., Rezania, A., Hubchak, S., and Healy, K. E. (1997) P(aam-co-eg) interpenetrating polymer networks grafted to oxide surfaces: surface characterization, protein adsorption, and cell detachment studies. Langmuir 13, 5175–5183.Google Scholar
  74. 74.
    Park, S., Bearinger, J. P., Lautenschlager, E. P., Castner, D. G., and Healy, K. E. (2000) Surface modification of poly(ethylene terephthalate) angioplasty balloons with a hydrophilic poly(acrylamide-co-ethylene glycol) interpenetrating polymer network coating. J. Biomed. Mater. Res. 53, 568–576.Google Scholar
  75. 75.
    Brockman, J. M., Nelson, B. P., and Corn, R. M. (2000) Surface plasmon resonance imaging measurements of ultra thin organic films. Ann. Rev. Phys. Chem. 51, 41–63.Google Scholar
  76. 76.
    Xia, N., Hu, Y., Grainger, D. W., and Castner, D. G. (2002) Functionalized poly(ethylene glycol)-grafted polysiloxane monolayers for control of protein binding. Langmuir 18, 3255–3262.Google Scholar
  77. 77.
    Metzger, S. W., Natesan, M., Yanavich, C., Schneider, J., and Lee, G. U. (1999) Development and characterization of surface chemistries for microfabricated biosensors. J. Vac. Sci. Technol. A 17, 2623–2628.Google Scholar
  78. 78.
    Huang, N.-P., Michel, R., Voros, J., et al. (2001) Poly(l-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: surface-analytical characterization and resistance to serum and fibrinogen adsorption. Langmuir 17, 489–498.Google Scholar
  79. 79.
    Pasche, S., De Paul, S. M., Voeroes, J., Spencer, N. D., and Textor, M. (2003) Poly (L-lysine)-graft-poly(ethylene glycol) assembled monolayers on niobium oxide surfaces: a quantitative study of the influence of polymer interfacial architecture on resistance to protein adsorption by TOF-SIMS and in situ OWLS. Langmuir 19, 9216–9225.Google Scholar
  80. 80.
    Tosatti, S., De Paul, S. M., Askendal, A., et al. (2003) Peptide functionalized poly(L-lysine)-g-poly(ethylene glycol) on titanium: resistance to protein adsorption in full heparinized human blood plasma. Biomaterials 24, 4949–4958.Google Scholar
  81. 81.
    Jo, S. and Park, K. (2000) Surface modification using silanated poly(ethylene glycol) s. Biomaterials 21, 605–616.Google Scholar
  82. 82.
    Tae, G., Lammertink, R. G. H., Kornfield, J. A., and Hubbell, J. A. (2003) Facile hydrophilic surface modification of poly(tetrafluoroethylene) using fluoroalkylterminated poly(ethylene glycol)s. Adv. Mater. 15, 66–69.Google Scholar
  83. 83.
    Martins, M. C. L., Wang, D., Ji, J., Feng, L., and Barbosa, M. A. (2003) Albumin and fibrinogen adsorption on pu-phema surfaces. Biomaterials 24, 2067–2076.Google Scholar
  84. 84.
    Horak, D., Jayakrishnan, A., and Arshady, R. (2003) Poly(2-hydroxyethyl methacrylate) hydrogels: preparation and properties. PBM Series 1, 65–107.Google Scholar
  85. 85.
    Czeslik, C., Jackler, G., Hazlett, T., et al. (2004) Salt-induced protein resistance of polyelectrolyte brushes studied using fluorescence correlation spectroscopy and neutron reflectometry. Phys. Chem. Chem. Phys. 6, 5557–5563.Google Scholar
  86. 86.
    Rollason, G. and Sefton, M. V. (1989) Inactivation of thrombin in heparin-pva coated tubes. J. Biomat. Sci. Polym. Ed. 1, 31–41.Google Scholar
  87. 87.
    Evangelista, R. A. and Sefton, M. V. (1986) Coating of two polyetherpolyurethanes and polyethylene with a heparin-poly(vinyl alcohol) hydrogel. Biomaterials 7, 206–211.Google Scholar
  88. 88.
    Proudnikov, D., Timofeev, E., and Mirzabekov, A. (1998) Immobilization of DNA in polyacrylamide gel for the manufacture of DNA and DNA-oligonucleotide microchips. Anal. Biochem. 259, 34–41.Google Scholar
  89. 89.
    Zlatanova, J. and Mirzabekov, A. (2001) Gel-immobilized microarrays of nucleic acids and proteins, in DNA Microarrays, (Rampal, J. B., ed.), Humana Press, Totowa, NJ, pp. 17–38.Google Scholar
  90. 90.
    Frazier, R. A., Matthijs, G., Davies, M. C., Roberts, C. J., Schacht, E., and Tendler, S. J. B. (2000) Characterization of protein-resistant dextran monolayers. Biomaterials 21, 957–966.Google Scholar
  91. 91.
    Massia, S. P. and Stark, J. (2001) Immobilized rgd peptides on surface-grafted dextran promote biospecific cell attachment. J. Biomed. Mater. Res. 56, 390–399.Google Scholar
  92. 92.
    Massia, S. P., Stark, J., and Letbetter, D. S. (2000) Surface-immobilized dextran limits cell adhesion and spreading. Biomaterials 21, 2253–2261.Google Scholar
  93. 93.
    Zhou, Y., Andersson, O., Lindberg, P., and Liedberg, B. (2004) Protein microarrays on carboxymethylated dextran hydrogels: immobilization, characterization and application. Microchimica Acta 147, 21–30.Google Scholar
  94. 94.
    Larsson, R. (1987) Biocompatible surfaces prepared by immobilized heparin or hyaluronate. Acta Otolaryngol. Suppl. 442, 44–49.Google Scholar
  95. 95.
    Larm, O., Larsson, R., and Olsson, P. (1983) A new nonthrombogenic surface prepared by selective covalent binding of heparin via a modified reducing terminal residue. Biomater. Artif. Cell 11, 161–173.Google Scholar
  96. 96.
    Morra, M. and Cassineli, C. (1999) Nonfouling properties of polysaccharidecoated surfaces. J. Biomat. Sci. Polym. Ed. 10, 1107–1124.Google Scholar
  97. 97.
    Dai, L. T., St. John, H. A. W., Bi, J., Zientek, P., Chatelier, R. C., and Griesser, H. J. (2000) Biomedical coatings by the covalent immobilization of polysaccharides onto gas-plasma-activated polymer surfaces. Surf. Interfacial Anal. 29, 46–55.Google Scholar
  98. 98.
    Oesterberg, E., Bergstroem, K., Holmberg, K., et al. (1993) Comparison of polysaccharide and poly(ethylene glycol) coatings for reduction of protein adsorption on polystyrene surfaces. Colloid Surf. A 77, 159–169.Google Scholar
  99. 99.
    Chen, G., Ito, Y., Imanishi, Y., Magnani, A., Lamponi, S., and Barbucci, R. (1997) Photoimmobilization of sulfated hyaluronic acid for antithrombogenicity. Bioconj. Chem. 8, 730–734.Google Scholar
  100. 100.
    Lemieux, M., Minko, S., Usov, D., Stamm, M., and Tsukruk, V. V. (2003) Direct measurement of thermoelastic properties of glassy and rubbery polymer brush nanolayers grown by grafting-from approach. Langmuir 19, 6126–6134.Google Scholar
  101. 101.
    Patten, T. E. and Matyjaszewski, K. (1998) Atom-transfer radical polymerization and the synthesis of polymeric materials. Adv. Mater. 10, 901–915.Google Scholar
  102. 102.
    Matyjaszewski, K. and Xia, J. (2001) Atom transfer radical polymerization. Chem. Rev. 101, 2921–2990.Google Scholar
  103. 103.
    Robinson, K. L., de Paz-Banez, M. V., Wang, X. S., and Armes, S. P. (2001) Synthesis of well-defined, semibranched, hydrophilic-hydrophobic block copolymers using atom transfer radical polymerization. Macromolecules 34, 5799–5805.Google Scholar
  104. 104.
    Wang, X. S. and Armes, S. P. (2000) Facile atom transfer radical polymerization of methoxy-capped oligo(ethylene glycol) methacrylate in aqueous media at ambient temperature. Macromolecules 33, 6640–6647.Google Scholar
  105. 105.
    Wang, X. S., Jackson, R. A., and Armes, S. P. (2000) Facile synthesis of acidic copolymers via atom transfer radical polymerization in aqueous media at ambient temperature. Macromolecules 33, 255–257.Google Scholar
  106. 106.
    Wang, X. S., Lascelles, S. F., Jackson, R. A., and Armes, S. P. (1999) Facile synthesis of well-defined water-soluble polymers via atom transfer radical polymerization (atrp) in aqueous media at ambient temperature. Chem. Commun. 18, 1817–1818.Google Scholar
  107. 107.
    Ashford, E. J., Naldi, V., O’Dell, R., Billingham, N. C., and Armes, S. P. (1999) First example of the atom transfer radical polymerization of an acidic monomer: direct synthesis of methacrylic acid copolymers in aqueous media. Chem. Commun. 14, 1285–1286.Google Scholar
  108. 108.
    Jones, D. M. and Huck, W. T. S. (2001) Controlled surface-initiated polymerizations in aqueous media. Adv. Mater. 13, 1256–1259.Google Scholar
  109. 109.
    Chilkoti, A., Ma, H., Hyun, J., and Nath, N. (2003) Passive and active nonfouling polymer grafts. Polymer Preprints (Am. Chem. Soc. Div. Polym. Chem.) 44, 455–456.Google Scholar
  110. 110.
    Mendez, S., Ista, L. K., and Lopez, G. P. (2003) Use of stimuli responsive polymers grafted on mixed self-assembled monolayers to tune transitions in surface energy. Langmuir 19, 8115–8116.Google Scholar
  111. 111.
    Huang, W., Kim, J.-B., Bruening, M. L., and Baker, G. L. (2002) Functionalization of surfaces by water-accelerated atom-transfer radical polymerization of hydroxyethyl methacrylate and subsequent derivatization. Macromolecules 35, 1175–1179.Google Scholar
  112. 112.
    Wang, X. and Bohn, P. W. (2004) Anisotropic in-plane gradients of poly(acrylic acid) formed by electropolymerization with spatiotemporal control of the electrochemical potential. J. Am. Chem. Soc. 126, 6825–6832.Google Scholar
  113. 113.
    Prime, K. L. and Whitesides, G. M. (1993) Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers. J. Am. Chem. Soc. 115, 10,714–10,721.Google Scholar
  114. 114.
    Feldman, K., Haehner, G., Spencer, N. D., Harder, P., and Grunze, M. (1999) Probing resistance to protein adsorption of oligo(ethylene glycol)-terminated self-assembled monolayers by scanning force microscopy. J. Am. Chem. Soc. 121, 10,134–10,141.Google Scholar
  115. 115.
    Kreuzer, H. J., Wang, R. L. C., and Grunze, M. (2003) Hydroxide ion adsorption on self-assembled monolayers. J. Am. Chem. Soc. 125, 8384–8389.Google Scholar
  116. 116.
    Pertsin, A. J., Hayashi, T., and Grunze, M. (2002) Grand canonical monte carlo simulations of the hydration interaction between oligo(ethylene glycol)-terminated alkanethiol self-assembled monolayers. J. Phys. Chem. B 106, 12,274–12,281.Google Scholar
  117. 117.
    Kreuzer, H. J., Wang, R. L. C., and Grunze, M. (1999) Effect of stretching on the molecular conformation of oligo(ethylene oxide): a theoretical study. New J. Phys. 1, 21.1–21.16.Google Scholar
  118. 118.
    Harder, P., Grunze, M., Dahint, R., Whitesides, G. M., and Laibinis, P. E. (1998) Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption. J. Phys. Chem. B 102, 426–436.Google Scholar
  119. 119.
    Herrwerth, S., Rosendahl, T., Feng, C., et al. (2003) Covalent coupling of antibodies to self-assembled monolayers of carboxy-functionalized poly(ethylene glycol): protein resistance and specific binding of biomolecules. Langmuir 19, 1880–1887.Google Scholar
  120. 120.
    Ulman, A. (1989) Ultrathin organic films: from langmuir-blodgett to self-assembly. J. Mater. Edu. 11, 205–280.Google Scholar
  121. 121.
    Ulman, A. (1996) Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554.Google Scholar
  122. 122.
    Grunze, M. (1993) Preparation and characterization of self-assembled organic films on solid substrates. Phys. Scripta T T49B, 711–717.Google Scholar
  123. 123.
    Nemetz, A., Fischer, T., Ulman, A., and Knoll, W. (1993) Surface-plasmonenhancedraman spectroscopy with 21-hydroxyheneicosanethiol (HS(CH2)21-OH) on different metals. J. Chem. Phys. 98, 5912–5919.Google Scholar
  124. 124.
    Horsley, D., Herron, J., Hlady, V., and Andrade, J. D. (1991) Fluorescence quenching of adsorbed hen and human lysozymes. Langmuir 7, 218–222.Google Scholar
  125. 125.
    Kawasaki, K., Kambara, M., Matsumura, H., and Norde, W. (2003) Protein adsorption at polymer-grafted surfaces: comparison between a mixture of saliva proteins and some well-defined model proteins. Biofouling 19, 355–363.Google Scholar
  126. 126.
    Norde, W. (1998) Driving forces for protein adsorption at solid surfaces, “Biopolymers At Interfaces,” 2nd ed., Surfactant Sci. Ser. 75, 27–54Google Scholar
  127. 127.
    Van Wagenen, R. A., Coleman, D. L., King, R. N., et al. (1981) Streaming potential investigations: polymer thin films. J. Colloid Interf. Sci. 84, 155–162.Google Scholar
  128. 128.
    Herrwerth, S., Eck, W., Reinhardt, S., and Grunze, M. (2003) Factors that determine the protein resistance of oligoether self-assembled monolayers—internal hydrophilicity, terminal hydrophilicity, and lateral packing density. J. Am. Chem. Soc. 125, 9359–9366.Google Scholar
  129. 129.
    Zheng, J., Li, L., Chen, S., and Jiang, S. (2004) Molecular simulation study of water interactions with oligo (ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir 20, 8931–8938.Google Scholar
  130. 130.
    Li, L., Chen, S., Zheng, J., Ratner, B. D., and Jiang, S. (2005) Protein adsorption on oligo(ethylene glycol)-terminated alkanethiolate self-assembled monolayers: the molecular basis for nonfouling behavior. J. Phys. Chem. B 109, 2934–2941.Google Scholar
  131. 131.
    Ostuni, E., Chapman, R. G., Liang, M. N., et al. (2001) Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir 17, 6336–6343.Google Scholar
  132. 132.
    Chapman, R. G., Ostuni, E., Takayama, S., Holmlin, R. E., Yan, L., and Whitesides, G. M. (2000) Surveying for surfaces that resist the adsorption of proteins. J. Am. Chem. Soc. 122, 8303–8304.Google Scholar
  133. 133.
    Tegoulia, V. A., Rao, W., Kalambur, A. T., Rabolt, J. F., and Cooper, S. L. (2001) Surface properties, fibrinogen adsorption, and cellular interactions of a novel phosphorylcholine-containing self-assembled monolayer on gold. Langmuir 17, 4396–4404.Google Scholar
  134. 134.
    Kitano, H., Kawasaki, A., Kawasaki, H., and Morokoshi, S. (2005) Resistance of zwitterionic telomers accumulated on metal surfaces against nonspecific adsorption of proteins. J. Colloid Interf. Sci. 282, 340–348.Google Scholar
  135. 135.
    Luk, Y.-Y., Kato, M., and Mrksich, M. (2000) Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir 16, 9604–9608.Google Scholar
  136. 136.
    Deng, L., Mrksich, M., and Whitesides, G. M. (1996) Self-assembled monolayers of alkanethiolates presenting tris(propylene sulfoxide) groups resist the adsorption of protein. J. Am. Chem. Soc. 118, 5136–5137.Google Scholar
  137. 137.
    Lopez, G. P., Ratner, B. D., Tidwell, C. D., Haycox, C. L., Rapoza, R. J., and Horbett, T. A. (1992) Glow discharge plasma deposition of tetraethylene glycol dimethyl ether for fouling-resistant biomaterial surfaces. J. Biomed. Mater. Res. 26, 415–439.Google Scholar
  138. 138.
    Shen, M., Pan, Y. V., Wagner, M. S., et al. (2001) Inhibition of monocyte adhesion and fibrinogen adsorption on glow discharge plasma deposited tetraethylene glycol dimethyl ether. J. Biomat. Sci. Polym. Ed. 12, 961–978.Google Scholar
  139. 139.
    Wu, Y. J., Timmons, R. B., Jen, J. S., and Molock, F. E. (2000) Nonfouling surfaces produced by gas phase pulsed plasma polymerization of an ultra low molecular weight ethylene oxide containing monomer. Colloid Surf. B: Biointerfaces 18, 235–248.Google Scholar
  140. 140.
    Griffith, L. G. (2000) Polymeric biomaterials. Acta Mater. 48, 263–277.Google Scholar
  141. 141.
    Ball, V., Schaaf, P., and Voegel, J.-C. (2003) Mechanism of interfacial exchange phenomena for proteins adsorbed at solid-liquid interfaces. “Biopolymers at interfaces,” 2nd ed., Surfactant Sci. Ser. 110, 295–320Google Scholar
  142. 142.
    Slack, S. M. and Horbett, T. A. (1995) The Vroman effect. A critical review. ACS Sym. Ser. 602, 112–128.Google Scholar
  143. 143.
    Krishnan, A., Sturgeon, J., Siedlecki, C. A., and Vogler, E. A. (2004) Scaled interfacial activity of proteins at the liquid-vapor interface. J. Biomed. Mater. Res., Part A 68A, 544–557.Google Scholar
  144. 144.
    Krishnan, A., Siedlecki, C. A., and Vogler, E. A. (2004) Mixology of protein solutions and the vroman effect. Langmuir 20, 5071–5078.Google Scholar
  145. 145.
    Shen, M., Martinson, L., Wagner Matthew, S., Castner David, G., Ratner Buddy, D., and Horbett Thomas, A. (2002) Peo-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: in vitro and in vivo studies. J. Biomat. Sci. Polym. E. 13, 367–390.Google Scholar
  146. 146.
    Wagner, M. S., McArthur, S. L., Shen, M., Horbett, T. A., and Castner, D. G. (2002) Limits of detection for time of flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS): detection of low amounts of adsorbed protein. J. Biomat. Sci. Polym. Ed. 13, 407–428.Google Scholar
  147. 147.
    Ronneberger, B., Kao, W. J., Anderson, J. M., and Kissel, T. (1996) In vivo biocompatibility study of aba triblock copolymers consisting of poly(l-lactic-coglycolic acid) blocks attached to central poly(oxyethylene) b blocks. J. Biomed. Mater. Res. 30, 31–40.Google Scholar
  148. 148.
    Suggs, L. J., Krishnan, R. S., Garcia, C. A., Peter, S. J., Anderson, J. M., and Mikos, A. G. (1998) In vitro and in vivo degradation of poly(propylene fumarateco-ethylene glycol) hydrogels. J. Biomed. Mater. Res. 42, 312–320.Google Scholar
  149. 149.
    Johnston, E. E., Bryers, J. D., and Ratner, B. D. (2005) Plasma deposition and surface characterization of oligoglyme, dioxane, and crown ether nonfouling films. Langmuir 21, 870–881.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Ping Gong
    • 1
  • David W. Grainger
    • 2
  1. 1.Department of Chemical EngineeringPolytechnic UniversityBrooklyn
  2. 2.Department of Pharmaceutics and Pharmaceutical ChemistryUniversity of UtahSalt Lake City

Personalised recommendations