Microarrays pp 411-436 | Cite as


Moving From Microarrays Toward Nanoarrays
  • Hua Chen
  • Jun Li
Part of the Methods in Molecular Biology™ book series (MIMB, volume 381)


Microarrays are important tools for high-throughput analysis of biomolecules. The use of microarrays for parallel screening of nucleic acid and protein profiles has become an industry standard. A few limitations of microarrays are the requirement for relatively large sample volumes and elongated incubation time, as well as the limit of detection. In addition, traditional microarrays make use of bulky instrumentation for the detection, and sample amplification and labeling are quite laborious, which increase analysis cost and delays the time for obtaining results. These problems limit microarray techniques from point-of-care and field applications. One strategy for overcoming these problems is to develop nanoarrays, particularly electronicsbased nanoarrays. With further miniaturization, higher sensitivity, and simplified sample preparation, nanoarrays could potentially be employed for biomolecular analysis in personal healthcare and monitoring of trace pathogens. In this chapter, it is intended to introduce the concept and advantage of nanotechnology and then describe current methods and protocols for novel nanoarrays in three aspects: (1) label-free nucleic acids analysis using nanoarrays, (2) nanoarrays for protein detection by conventional optical fluorescence microscopy as well as by novel label-free methods such as atomic force microscopy, and (3) nanoarray for enzymatic-based assay. These nanoarrays will have significant applications in drug discovery, medical diagnosis, genetic testing, environmental monitoring, and food safety inspection.

Key Words

Atomic force microscopy (AFM) carbon nanotube (CNT) CCD camera chemical vapor deposition (CVD) CNT nanoelectrode array electrochemical enzymatic assay multiwalled carbon nanotube (MWCNT) nanoarray nanochip array nanoelectrode nanolithography nanotechnology nucleic acid analysis plasma-enhanced chemical vapor deposition (PECVD) protein detection scanning probe microscopy self-assembly single-walled carbon nanotube 


  1. 1.
    Li, J., Ng, H. T., and Chen, H. (2005) Carbon nanotube and nanowires for biological sensing, in Protein Nanotechnology, Protocols, Instrumentation and Applications, (Vo-Dinh, T., ed.), Humana, Totowa, NJ, pp. 191–223.Google Scholar
  2. 2.
    Li, J., Ng, H. T., Cassell, A., et al. (2003) Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett. 3, 597–602.CrossRefGoogle Scholar
  3. 3.
    Koehne, J., Chen, H., Li, J., et al. (2003) Ultrasensitive label-free electronic method for DNA analysis using carbon nanotube nanoelectrode array. Nanotechnology 14, 1239–1245.CrossRefGoogle Scholar
  4. 4.
    Piner, R. D., Zhu, J., Xu, F., Hong, S., and Mirkin, C. A. (1999) “Dip-Pen” nanolithography. Science 283, 661CrossRefGoogle Scholar
  5. 5.
    Lee, K.-B., Park, S. J., Mirkin, C. A., Smith, J. C., and Mrksich, M. (2002) Protein nanoarrays generated by dip-pen nanolithography. Science 295, 1702.CrossRefGoogle Scholar
  6. 6.
    Demers, L. M., Ginger, D. S., Park, S. J., Li, Z., Chung, S. W., and Mirkin, C. (2002) Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 296, 1836.CrossRefGoogle Scholar
  7. 7.
    Ginger, D. S., Zhang, H., and Mirkin, C. A. (2004) The evolution of Dip-Pen nanolithography. Angew. Chem., Int. Ed. 43, 30.CrossRefGoogle Scholar
  8. 8.
    Bruckbauer, A., Zhou, D., Kang, D. J., Korchev, Y. E., Abell, C., and Klenerman, D. (2004) An addressable antibody nanoarray produced on a nanostructured surface. J. Am. Chem. Soc. 126, 6508–6509.CrossRefGoogle Scholar
  9. 9.
    Lynch, M., Mosher, C., Huff, J., Nettikadan, S., Johnson, J., and Henderson, E. (2004) Functional protein nanoarrays for biomarker profiling. Proteomics 4, 1695–1702.CrossRefGoogle Scholar
  10. 10.
    Lee, K. B., Kim, E.-Y., Mirkin, C. A., and Wolinsky, S. M. (2004). The use of nanoarrays for highly sensitive and selective detection of human immunodeficiency Virus Type 1 in Plasma. Nano Lett. 4, 1869–1872.CrossRefGoogle Scholar
  11. 11.
    Wang, J. (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17, 7–14.CrossRefGoogle Scholar
  12. 12.
    Dietrich, H. R., Knoll, J., van den Doel, L. R., et al. (2004) Nanoarrays: a method for performing enzymatic assays. Anal. Chem. 76, 4112–4117.CrossRefGoogle Scholar
  13. 13.
    Feynman, R. P. (1960) There’s plenty of room at the bottom: an invitation to enter a new field of physics. Engineering Sci: (accessed Feb 2, 2005).Google Scholar
  14. 14.
    Drexler, K. E. (1986) Engines of Creation. Anchor Press/Doubleday, New York.Google Scholar
  15. 15.
    Iijima, S. (1991) Helical microtubules of graphitic carbon. Nature 354, 56–58.CrossRefGoogle Scholar
  16. 16.
    Ferrari, M. (2005) Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171.CrossRefGoogle Scholar
  17. 17.
    Silva, G. A. (2004) Introduction to nanotechnology and its applications to medicine. Surg. Neurol. 61, 216–220.CrossRefGoogle Scholar
  18. 18.
    Stix, G. (2001) Little big science. Scientific American 285, 32–37.CrossRefGoogle Scholar
  19. 19.
    Fortina, P., Kricka, L. J., Surrey, S., and Grodzinski, P. (2005) Nanobiotechnology: the promise and reality of new approaches to molecular recognition. Trends Biotechnol. 23, 168–173.CrossRefGoogle Scholar
  20. 20.
    Rosi, N. L. and Mirkin, C. A. (2005) Nanostructures in biodiagnostics. Chem. Rev. 105, 1547–1562.CrossRefGoogle Scholar
  21. 21.
    Emerich, D. F. (2005) Nanomedicine—prospective therapeutic and diagnostic applications. Expert. Opin. Biol. Ther. 5, 1–5.CrossRefGoogle Scholar
  22. 22.
    Silva, G. A. (2005) Nanotechnology approaches for the regeneration and neuroprotection of the central nervous system. Surg. Neurol. 63, 301–306.CrossRefGoogle Scholar
  23. 23.
    Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C. (eds.) (1996) Science of Fullerenes and Carbon Nanotubes. Academic Press, New York.Google Scholar
  24. 24.
    Meyyappan, M. (ed.) (2004) Carbon Nanotubes: Science and Applications. CRC Press, Boca Raton, FL.Google Scholar
  25. 25.
    McCreery, R. L. (1991) Carbon electrodes: structural effects on electron transfer kinetics, in Electroanalytical Chemistry, vol. 1 (Bard, A. J., ed.), Marcel Dekker, New York, pp. 221–374.Google Scholar
  26. 26.
    Koehne, J., Li, J., Cassell, A. M., et al. (2004) The fabrication and electrochemical characterization of carbon nanotube nanoelectrode arrays. J. Matr. Chem. 14, 676–684.CrossRefGoogle Scholar
  27. 27.
    Bard, A. J. and Faulkner, L. R. (eds.) (2001) Electrochemical Methods: Fundamentals and Applications, 2nd ed. Wiley, New York.Google Scholar
  28. 28.
    Wightman, R. M. (1981) Microvoltammetric electrodes. Anal. Chem. 53, 1125A–1134A.CrossRefGoogle Scholar
  29. 29.
    Fan, F. R. F. and Bard, A. J. (1995) Electrochemical detection of single molecules. Science 267, 871.CrossRefGoogle Scholar
  30. 30.
    Menon, V. P. and Martin, C. R. (1995) Fabrication and evaluation of nanoelectrode ensemble. Anal. Chem. 67, 1920.CrossRefGoogle Scholar
  31. 31.
    Peterson, A. W., Heaton, R. J., and Georgiadis, R. M. (2001) The effect of surface probe density on DNA hybridization. Nucleic Acids Res. 29, 5163–5168.CrossRefGoogle Scholar
  32. 32.
    Peterson, A. W., Wolf, L. K., and Georgiadis, R. M. (2002) Hybridization of mismatched or partially matched DNA at surfaces. J. Am. Chem. Soc. 124, 14,601–14,607.CrossRefGoogle Scholar
  33. 33.
    Dorris, D. R., Nguyen, A., Gieser, L., et al. (2003) Oligodeoxyribonucleotide probe accessibility on a three-dimensional DNA microarray surface and the effect of hybridization time on the accuracy of expression ratios. BMC Biotechnol. 3, 1472–1483.CrossRefGoogle Scholar
  34. 34.
    Yao, D., Kim, J., Yu, F., Nielsen, P. E., Sinner, E.-K., and Knoll, W. (2005) Surface density dependence of PCR amplicon hybridization on PNA/DNA probe layers. Biophys. J. 88, 2745–2751.CrossRefGoogle Scholar
  35. 35.
    Heaton, R. J., Peterson, A. W., and Georgiadis, R. M. (2001) Electrostatic surface plasmon resonance: direct electric field-induced hybridization and denaturation in monolayer nucleic acid films and label-free diacrimination of base mismatches. Proc. Natl. Acad. Sci. USA 98, 3701–3704.CrossRefGoogle Scholar
  36. 36.
    Sosnowski, R. G., Tu, E., Butler, W. F., O’Connell, J. P., and Heller, M. J. (1997) Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control. Proc. Natl. Acad. Sci. USA 94, 1119.CrossRefGoogle Scholar
  37. 37.
    Popovich, N. D. and Thorp, H. H. (2002) New strategies for electrochemical nucleic acid detection. Interface 11, 30.Google Scholar
  38. 38.
    Einstein, A. (1956) On the movement of small particles suspended in a stationary liquid demanded by the molecular kinetic theory of heat, in Investigations on the Theory of the Brownian Movement (Furth, R., and Cowper, A. D. eds.), Dover, New York, pp. 1–18.Google Scholar
  39. 39.
    Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C. (eds.) (1996) Science of Fullerenes and Carbon Nanotubes. Academic Press, New York.Google Scholar
  40. 40.
    Ebbesen, T. W. (ed.) (1996) Carbon Nanotubes: Preparation and Properties. CRC Press, Boca Raton, FL.Google Scholar
  41. 41.
    Saito, R., Dresselhaus, M. S., and Dresselhaus, G. (eds.) (1998) Physical Properties of Carbon Nanotubes. World Scientific, New York.Google Scholar
  42. 42.
    Tománek, D. and Enbody, R. (eds.) (2000) Science and Application of Nanotubes. Kluwer Academic, New York.Google Scholar
  43. 43.
    Collins, P. G., Arnold, M. S., and Avouris, P. (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292, 706–709.CrossRefGoogle Scholar
  44. 44.
    Tans, S. J., Verschueren, A. R. M., and Dekker, C. (1998) Room-temperature transistor based on a single carbon nanotube. Natur 393, 49–52.CrossRefGoogle Scholar
  45. 45.
    Fuhrer, M. S., Nygard, J., Shih, L., et al. (2000) Crossed nanotube junctions. Science 288, 494–497.CrossRefGoogle Scholar
  46. 46.
    Zhou, C. W., Kong, J., Yenilmez, E., and Dai, H. (2000) Modulated chemical doping of individual carbon nanotubes. Science 290, 1552–1555.CrossRefGoogle Scholar
  47. 47.
    Rueckes, T., Kim, K., Joselevich, E., Tseng, G. Y., Cheung, C. L., and Lieber, C. M. (2000) Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–97.CrossRefGoogle Scholar
  48. 48.
    Derycke, V., Martel, R., Appenzeller, J., and Avouris, Ph. (2001) Carbon Nanotube inter-and intramolecular logic gates. Nano Lett. 1, 453–456.CrossRefGoogle Scholar
  49. 49.
    Bachtold, A., Hadley, P., Nakanishi, T., and Dekker, C. (2001) Logic circuits with carbon nanotube transistors. Science 294, 1317–1320.CrossRefGoogle Scholar
  50. 50.
    Liu, X. L., Lee, C., Zhou, C. W., and Han, J. (2001) Carbon nanotube field-effect inverters. Appl. Phys. Lett. 79, 3329–3331.CrossRefGoogle Scholar
  51. 51.
    Rosenblatt, S., Yaish, Y., Park, J., Gore, J., Sazonova, V., and McEuen, P. L. (2002) High performance electrolyte gated carbon nanotube transistors. Nano Lett. 2, 869–872.CrossRefGoogle Scholar
  52. 52.
    Vigolo, B., Penicaud, A., Coulon, C., et al. (2000) Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290, 1331–1334.CrossRefGoogle Scholar
  53. 53.
    de Heer, W. A., Chatelain, A., and Ugarte, D. (1995) A carbon nanotube field-emission electron source. Science 270, 1179–1180.CrossRefGoogle Scholar
  54. 54.
    Rinzler, A. G., Hafner, J. H., Nikolaev, P., et al. (1995) Unraveling nanotubes: field emission from an atomic wire. Science 269, 1550–1553.CrossRefGoogle Scholar
  55. 55.
    Dai, H., Hafner, J. H., Rinzler, A. G., Colbert, D. T., and Smalley, R. E. (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384, 147–150.CrossRefGoogle Scholar
  56. 56.
    Wong, S., Joselevich, E., Woolley, A., Cheung, C., and Lieber, C. M. (1998) Covalently functionalized nanotubes as nanometer-sized probes in chemistry and biology. Nature 394, 52–55.CrossRefGoogle Scholar
  57. 57.
    Li, J., Cassell, A., and Dai, H. (1999) Carbon nanotubes as AFM tips: measuring DNA molecules at the liquid/solid interfaces. Surf. Interface Anal. 28, 8–11.CrossRefGoogle Scholar
  58. 58.
    Nguyen, C. V., Chao, K. J., Stevens, R. M. D., et al. (2001) Growth of carbon nanotubes by thermal and plasma chemical vapour deposition processes and applications in microscopy. Nanotechnology 12, 363–367.CrossRefGoogle Scholar
  59. 59.
    Liu, C. F., Fan, Y. Y., Liu, M., Cong, H. T., Chen, H. M., and Dresselhaus, M. S. (1999) Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286, 1127–1129.CrossRefGoogle Scholar
  60. 60.
    Che, G., Lakshmi, B. B., Fisher, E. R., and Martin, C. R. (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393, 346–349.CrossRefGoogle Scholar
  61. 61.
    Kong, J., Franklin, N. R., Zhou, C. W., et al. (2000) Nanotube molecular wires as chemical sensors. Science 287, 622–625.CrossRefGoogle Scholar
  62. 62.
    Collins, P. G., Bradley, K., Ishigami, M., and Zettl, A. (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287, 1801–1804.CrossRefGoogle Scholar
  63. 63.
    Sumanasekera, G. U., Adu, C. K. W., Fang, S., and Eklund, P. C. (2000) Effects of gas adsorption and collisions on electrical transport in single-walled carbon nanotubes. Phys. Rev. Lett. 85, 1096–1099.CrossRefGoogle Scholar
  64. 64.
    Ng, H. T., Fang, A., Li, J., and Li, S. F. Y. (2001) Flexible carbon nanotube membrane sensory system: a generic platform. J. Nanosci. Nanotech. 1, 375–379.CrossRefGoogle Scholar
  65. 65.
    Li, J. and Ng, H. T. (2003) Carbon nanotube sensors, in Encyclopedia of Nanoscience and Nanotechnology, vol. 1 (Nalwa, H. S., ed.), American Scientific Publishers, Santa Barbar, CA, pp. 591–601.Google Scholar
  66. 66.
    Li, J., Ye, Q., Cassell, A., et al. (2003) Bottom-up approach for carbon nanotube interconnects. Appl. Phys. Lett. 82, 2491–2493.CrossRefGoogle Scholar
  67. 67.
    Ren, Z. F., Huang, Z. P., Xu, J. W., et al. (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107.CrossRefGoogle Scholar
  68. 68.
    Delzeit, L., McAninch, I., Cruden, B. A., et al. (2002) Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor. J. Appl. Phys. 91, 6027–6033.CrossRefGoogle Scholar
  69. 69.
    Cassell, A. M., Ye, Q., Cruden, B. A., et al. (2004) Combinatorial chips for optimizing the growth and integration of carbon nanofibre based devices. Nanotechnology 15, 9–15.CrossRefGoogle Scholar
  70. 70.
    Cruden, B. A., Cassell, A. M., Ye, Q., and Meyyappan, M. (2003) Reactor design considerations in the hot filament/direct current plasma synthesis of carbon nanofibers. J. Appl. Phys. 94, 4070–4078.CrossRefGoogle Scholar
  71. 71.
    Staros, J. V. (1982) N-hydroxysulfosuccinimide active esters—bis(N-hydroxysulfosuccinimide) esters of 2 dicarboxylic-acids are hydrophilic, membrane-impermeant, protein cross-linkers. Biochemistry 21, 3950–3955.CrossRefGoogle Scholar
  72. 72.
    Miki, Y., Swensen, J., Shattuck-Eidens, D., et al. (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66–71.CrossRefGoogle Scholar
  73. 73.
    Staros, J. V. (1982) N-hydroxysulfosuccinimide active esters—bis(N-hydroxysulfosuccinimide) esters of 2 dicarboxylic-acids are hydrophilic, membrane-impermeant, protein cross-linkers. Biochemistry 21, 3950–3955.CrossRefGoogle Scholar
  74. 74.
    Popovich, N. D. and Thorp, H. H. (2002) New strategies for electrochemical nucleic acid detection. Interface 11, 30.Google Scholar
  75. 75.
    Cheng, J., Sheldon, E. L., Wu, L., et al. (1998) Preparation and hybridization analysis of DNA/RNA from E. coli on microfabricated bioelectronic chips. Nat. Biotechnol. 16, 541–546.CrossRefGoogle Scholar
  76. 76.
    Edman, C. F., Raymond, D. E., Wu, D. J., et al. (1997) Electric field directed nucleic acid hybridization on microchips. Nucleic Acids Res. 25, 4907–4914.CrossRefGoogle Scholar
  77. 77.
    Sosnowski, R. G., Tu, E., Butler, W. F., O’Connell, J. P., and Heller, M. J. (1997) Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control. Proc. Natl. Acad. Sci. USA 94, 1119.CrossRefGoogle Scholar
  78. 78.
    Gilles, P. N., Wu, D. J., Foster, C. B., Dillon, P. J., and Chanock, S. J. (1999) Single nucleotide polymorphoric discrimination by an electronic dot blot assay on semiconductor microchip. Nat. Biotechnol. 17, 365–370.CrossRefGoogle Scholar
  79. 79.
    Bertilsson, L. and Liedberg, B. (1993) Infrared study of thiol monolayer assemblies on gold: preparation, characterization and functionalization of mixed monolayers. Langmuir 9, 141–149.CrossRefGoogle Scholar
  80. 80.
    Nuzzo, R. G. and Allara, D. L. (1983) Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 105, 4481–4483.CrossRefGoogle Scholar
  81. 81.
    Porter, M. D., Bright, T. B., Allara, D. L., and Chidsey, C. D. (1987) Spontaneously organized molecular assemblies. 4. Structural characterization of n-Alkyl Thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. J. Am. Chem. Soc. 109, 3559–3568.CrossRefGoogle Scholar
  82. 82.
    Whitesides, G. M. and Bain C. D. (1988) Molecular-level control over surface order in self-assembled monolayer films of thiols on gold. Science 240, 62–63.CrossRefGoogle Scholar
  83. 83.
    Strong, L. and Whitesides, G. M. (1988) The structures of self-assembled monolayer films of organosulfur compounds adsorbed on gold single crystals: electron diffraction studies. Langmuir 4, 546–558.CrossRefGoogle Scholar
  84. 84.
    Dubois, L. H., Zegarski, B. R., and Nuzzo, R. G. (1987) Fundamental studies of the interactions of adsorbates on organic surfaces. Proc. Natl. Acad. Sci. USA 84, 4739–4742.CrossRefGoogle Scholar
  85. 85.
    Bain, C. D. and Whitesides, G. M. (1988) Correlation between wettability and structure in monolayers in alkanethiols adsorbed on gold. J. Am. Chem. Soc. 110, 3665–3666.CrossRefGoogle Scholar
  86. 86.
    Springer, A. L., Gall, A. S., Hughes, K. A., Kaiser, R. J., Li, G. S., and Lund, K. P. (2003) Salicylhydroxamic acid functionalized affinity membranes for specific immobilization of proteins and oligonucleotides. J. Biomol. Tech. 14, 183–190.Google Scholar
  87. 87.
    Schaeferling, M., Stefan, S. S., Hubert, P. H., et al. (2002) Application of self-assembly techniques in the design of biocompatible protein microarray surfaces. Electrophoresis 23, 3097–3105.CrossRefGoogle Scholar
  88. 88.
    Kenseth, J. R., Harnisch, J. R., Vivian, W., Jones, V. W., and Porter, M. D. (2001) Investigation of approaches for the fabrication of protein patterns by scanning probe lithography. Langmuir 17, 4105–4112.CrossRefGoogle Scholar
  89. 89.
    Nakano, K., Taira, H., Maeda, M., and Takagi, M. (1993) New bifunctional dialkyl disulfide reagent for the fabrication of a gold surface with the bioaffinity ligand. Anal. Sci. 9, 133–136.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Hua Chen
    • 1
  • Jun Li
    • 1
  1. 1.NASA Ames Research CenterMoffett Field

Personalised recommendations