Advertisement

Microarrays pp 37-57 | Cite as

Current Microarray Surface Chemistries

  • David W. Grainger
  • Charles H. Greef
  • Ping Gong
  • Michael J. Lochhead
Part of the Methods in Molecular Biology™ book series (MIMB, volume 381)

Abstract

In almost all microarray technologies that are currently used, some type of surface chemistry serves as the interface between immobilized biomolecules and the solid support. Factors such as probe loading, spot morphology, and signal-to-noise ratio are all intimately linked to surface chemistry. Surface chemistry also significantly impacts important performance parameters such as three-dimensional structure of the immobilized biomolecules and nonspecific assay backgrounds. Here, an overview of the major types of surface chemistries currently used in printed microarrays is provided, with an emphasis on standard glass slide formats. The first part of this chapter focuses on DNA array surface chemistries, including both commercially fabricated and custom-made arrays. The second part of the chapter focuses on emerging protein, peptide, and carbohydrate array techniques. The intent is to provide the molecular biology researcher and bioanalytical or diagnostic specialist with a guide to the surface chemistry state-of-the-art for established and emerging array technologies.

Key Words

Bioassay carbohydrate array diagnostics DNA array glass slide hydrogel microarray nonspecific binding peptide array polymer coating protein array silane surface chemistry surface immobilization 

References

  1. 1.
    Southern, E. M. (2001) DNA microarrays: History and overview, in DNA Arrays, (Rampal, J. B., ed.), Humana, Totowa, NJ, pp. 1–15.CrossRefGoogle Scholar
  2. 2.
    Aboytes, K., Humphreys, J., Reis, S., and Ward, B. (2003) Slide coating and DNA immobilization chemistries in A Beginner’s Guide to Microarrays (Blalock, E., ed.), Kluwer, Norwell, MA, pp. 1–42.Google Scholar
  3. 3.
    Schena, M. (ed.) (2003) Microarray Analysis, John Wiley & Sons, Hoboken, NJ.Google Scholar
  4. 4.
    Sobek, J. and Schlapbach, R. (2004) Substrate architecture and functionality. Microarray Technology (September) 32–44.Google Scholar
  5. 5.
    Templin, M. F., Stoll, D., Schwenk, J. M., Potz, O., Kramer, S., and Joos, T. O. (2003) Protein microarrays: promising tools for proteomic research. Proteomics 3, 2155–2166.CrossRefGoogle Scholar
  6. 6.
    Angenendt, P., Glokler, J., Sobek, J., Lehrach, H., and Cahill, D. J. (2003) Next generation of protein microarray support materials: evaluation for protein and antibody microarray applications. J. Chromatogr. A 1009, 97–104.CrossRefGoogle Scholar
  7. 7.
    Kusnezow, W. and Hoheisel, J. D. (2003) Solid supports for microarray immunoassays. J. Mol. Recognit. 16, 165–176.CrossRefGoogle Scholar
  8. 8.
    Panicker, R. C., Huang, X., and Yao, S. Q. (2004) Recent advances in peptide-based microarray technologies. Comb. Chem. High Throughput Screen. 7, 547–556.Google Scholar
  9. 9.
    Wang, D. (2003) Carbohydrate microarrays. Proteomics 3, 2167–2175.CrossRefGoogle Scholar
  10. 10.
    Peterson, A. W., Heaton, R. J., and Georgiadis, R. M. (2001) The effect of surface probe density on DNA hybridization. Nucleic Acids Res. 29, 5163–5168.CrossRefGoogle Scholar
  11. 11.
    Vainrub, A. and Pettitt, B. M. (2002) Coulomb blockage of hybridization in two-dimensional DNA arrays. Phys. Rev. E Stat. Nonlin Soft Matter Phys. 66, 041905.CrossRefGoogle Scholar
  12. 12.
    Vainrub, A. and Pettitt, B. M. (2003) Surface electrostatic effects in oligonucleotide microarrays: control and optimization of binding thermodynamics. Biopolymers 68, 265–270.CrossRefGoogle Scholar
  13. 13.
    McGall, G. H. and Fidanza, J. A. (2001) Photolithographic synthesis of high density oligonucleotide arrays, in DNA Arrays, (Rampal, J. B., ed.), Humana, Totowa, NJ, pp. 71–101.CrossRefGoogle Scholar
  14. 14.
    McGall, G. H. and Christians, F. C. (2002) High-density genechip oligonucleotide probe arrays. Adv. Biochem. Eng. Biotechnol. 77, 21–42.Google Scholar
  15. 15.
    Nuwaysir, E. F., Huang, W., Albert, T. J., et al. (2002) Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. Genome Res. 12, 1749–1755.CrossRefGoogle Scholar
  16. 16.
    Ramakrishnan, R., Dorris, D., Lublinsky, A., et al. (2002) An assessment of Motorola CodeLink microarray performance for gene expression profiling applications. Nucleic Acids Res. 30, E30.CrossRefGoogle Scholar
  17. 17.
    Shippy, R., Sendera, T. J., Lockner, R., et al. (2004) Performance evaluation of commercial short-oligonucleotide microarrays and the impact of noise in making cross-platform correlations. BMC Genomics 5, 61.CrossRefGoogle Scholar
  18. 18.
    Mergen, Ltd. (San Leandro, CA), www.mergen.ltd.comGoogle Scholar
  19. 19.
    Mittal, K. L. (ed.) (1992) Silanes and Other Coupling Agents, VSP International Science Publishers, VSP International Science Publishers, Utrecht, The Netherlands.Google Scholar
  20. 20.
    Patrick Brown Lab, Department of Biochemistry, Stanford, http://cmgm.stanford.edu/pbrown/protocols/1_slides.html.Google Scholar
  21. 21.
    Taylor, S., Smith, S., Windle, B., and Guiseppi-Elie, A. (2003) Impact of surface chemistry and blocking strategies on DNA microarrays. Nucleic Acids Res. 31, E87.CrossRefGoogle Scholar
  22. 22.
    Vasiliskov, A. V., Timofeev, E. N., Surzhikov, S. A., et al. (1999) Fabrication of microarray of gel-immobilized compounds on a chip by copolymerization. Biotechniques 27, 592–594, 96–98, 600 passim.Google Scholar
  23. 23.
    Zlatanova, J. and Mirzabekov, A. (2001) Gel-immobilized microassays of nucleic acids and proteins, in DNA Arrays, (Rampal, J. B., ed.), Humana, Totowa, NJ, pp. 17–38.CrossRefGoogle Scholar
  24. 24.
    Metzger, S., Lochhead, M. J., and Grainger, D. W. (2002) Surface technologies to improve performance in protein microarray based molecular diagnostics. IVD Technol. 8, 39–45.Google Scholar
  25. 25.
    Andrade, J. D., Hlady, V., Feng, L., and Tingey, K. (1996) Proteins at interfaces: principles, problems, and potential. Bioprocess Technol. 23, 19–55.Google Scholar
  26. 26.
    Hlady, V. and Buijs, J. (1996) Protein adsorption on solid surfaces. Curr. Opin. Biotechnol. 7, 72–77.CrossRefGoogle Scholar
  27. 27.
    Kleijn, M. and Norde, W. (1995) The adsorption of proteins from aqueous solution on solid surfaces. Heterogeneous Chem. Rev. 2, 157–172.Google Scholar
  28. 28.
    Malmsten, M. (1999) Protein adsorption at the solid-liquid interface. Protein Architecture: Interfacial Molecular Assemblies and Immobilization Biotechnology (LVOV, Y. and Möhwald, eds. Marcel Dekker, Inc., New York, pp. 1–23.Google Scholar
  29. 29.
    Norde, W. (2000) Proteins at solid surfaces, in Physical Chemistry of Biological Interfaces (Baszkin, A., Norde, W., eds.), Marcel Dekker, New York, NY, pp. 115–135.Google Scholar
  30. 30.
    Wahlgren, M. and Arnebrant, T. (1991) Protein adsorption to solid surfaces. Trends Biotechnol. 9, 201–208.CrossRefGoogle Scholar
  31. 31.
    Ekins, R., Chu, F., and Biggart, E. (1990) Fluorescence spectroscopy and its application to a new generation of high sensitivity, multi-microspot, multianalyte, immunoassay. Clin. Chim. Acta 194, 91–114.CrossRefGoogle Scholar
  32. 32.
    Haab, B. B., Dunham, M. J., and Brown, P. O. (2001) Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2, Research0004.CrossRefGoogle Scholar
  33. 33.
    Miller, J. C., Zhou, H., Kwekel, J., et al. (2003) Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics 3, 56–63.CrossRefGoogle Scholar
  34. 34.
    Espina, V., Mehta, A. I., Winters, M. E., et al. (2003) Protein microarrays: molecular profiling technologies for clinical specimens. Proteomics 3, 2091–2100.CrossRefGoogle Scholar
  35. 35.
    Liotta, L. A., Espina, V., Mehta, A. I., et al. (2003) Protein microarrays: meeting analytical challenges for clinical applications. Cancer Cell 3, 317–325.CrossRefGoogle Scholar
  36. 36.
    MacBeath, G. and Schreiber, S. L. (2000) Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763.Google Scholar
  37. 37.
    Zhu, H., Bilgin, M., Bangham, R., et al. (2001) Global analysis of protein activities using proteome chips. Science 293, 2101–2105.CrossRefGoogle Scholar
  38. 38.
    Boutell, J. M., Hart, D. J., Godber, B. L., Kozlowski, R. Z., and Blackburn, J. M. (2004) Functional protein microarrays for parallel characterisation of p53 mutants. Proteomics 4, 1950–1958.CrossRefGoogle Scholar
  39. 39.
    Robinson, W. H., DiGennaro, C., Hueber, W., et al. (2002) Autoantigen microarrays for multiplex characterization of autoantibody responses. Nat. Med. 8, 295–301.CrossRefGoogle Scholar
  40. 40.
    Drickamer, K. and Taylor Maureen, E. (2002) Glycan arrays for functional glycomics. Genome Biol. 3, Reviews 1034.Google Scholar
  41. 41.
    Ratner, D. M., Adams, E. W., Su, J., O’Keefe, B. R., Mrksich, M., and Seeberger, P. H. (2004) Probing protein-carbohydrate interactions with microarrays of synthetic oligosaccharides. Chem. BioChem. 5, 379–382.Google Scholar
  42. 42.
    Feizi, T., Fazio, F., Chai, W., and Wong, C. H. (2003) Carbohydrate microarrays-a new set of technologies at the frontiers of glycomics. Curr. Opin. Struct. Biol. 13, 637–645.CrossRefGoogle Scholar
  43. 43.
    Blixt, O., Head, S., Mondala, T., et al. (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. USA 101, 17,033–17,038.CrossRefGoogle Scholar
  44. 44.
    Disney, M. D., Magnet, S., Blanchard, J. S., and Seeberger, P. H. (2004) Aminoglycoside microarrays to study antibiotic resistance. Angew. Chem. Int. Ed. Engl. 43, 1591–1594.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • David W. Grainger
    • 1
  • Charles H. Greef
    • 2
  • Ping Gong
    • 3
  • Michael J. Lochhead
    • 2
  1. 1.Department of Pharmaceutics and Pharmaceutical ChemistryUniversity of UtahSalt Lake City
  2. 2.Accelr8 Technology CorporationDenver
  3. 3.Department of Chemical EngineeringPolytechnic UniversityBrooklyn

Personalised recommendations