Advertisement

Microarrays pp 313-338 | Cite as

Intein-Mediated Peptide Arrays for Epitope Mapping and Kinase/Phosphatase Assays

  • Ming-Qun Xu
  • Inca Ghosh
  • Samvel Kochinyan
  • Luo Sun
Part of the Methods in Molecular Biology™ book series (MIMB, volume 381)

Abstract

Synthetic peptides are widely used for production and analysis of antibodies as well as in the study of protein modification enzymes. To circumvent the technical challenges of the existing techniques regarding peptide quantization and normalization, a new method of producing peptide arrays has been developed. This approach utilizes intein-mediated protein ligation that involves linkage of a carrier protein possessing a reactive carboxyl-terminal thioester to a peptide with an amino-terminal cysteine through a native peptide bond. Ligated protein substrates or enzymetreated samples are arrayed on nitrocellulose membranes with a standard dot-blot apparatus and analyzed by immunoassay. This technique has improved sensitivity and reproducibility, and is suitable for various peptide-based applications. In this report, several experimental procedures including epitope mapping and the study of protein modifications were described.

Key Words

Intein-mediated protein ligation kinase nitrocellulose peptide array phosphatase protein substrate 

References

  1. 1.
    Houseman, B. T., Huh, J. H., Kron, S. J., and Mrksich, M. (2002) Peptide chips for the quantitative evaluation of protein kinase activity. Nat. Biotechnol. 20, 270–274.CrossRefGoogle Scholar
  2. 2.
    Lesaicherre, M. L., Uttamchandani, M., Chen, G. Y., and Yao, S. Q. (2002) Antibody-based fluorescence detection of kinase activity on a peptide array. Bioorg. Med. Chem. Lett. 12, 2085–2088.CrossRefGoogle Scholar
  3. 3.
    Songyang, Z., Carraway, K. L., Eck, M. J., et al. (1995) Catalytic specificity of protein-tyrosine kinases is critical for selective signaling. Nature 373, 536–539.CrossRefGoogle Scholar
  4. 4.
    Falsey, J. R., Renil, M., Park, S., Li, S., and Lam, K. S. (2001) Peptide and small molecule microarray for high throughput cell adhesion and functional assays. Bioconjug. Chem. 12, 346–353.CrossRefGoogle Scholar
  5. 5.
    Harlow, E. and Lane, D. (1988) Antibodies, in Immunoassays, (Harlow, E. and Lane, D., eds.). Cold Spring Harbor Laboratory, New York. pp. 553–612.Google Scholar
  6. 6.
    Martens, W., Greiser-Wilke, I., Harder, T. C., et al. (1995) Spot synthesis of overlapping peptides on paper membrane supports enables the identification of linear monoclonal antibody binding determinants on morbillivirus phosphoproteins. Vet. Microbiol. 44, 289–298.CrossRefGoogle Scholar
  7. 7.
    Reineke, U., Ivascu, C., Schlief, M., et al. (2002) Identification of distinct antibody epitopes and mimotopes from a peptide array of 5520 randomly generated sequences. J. Immunol. Methods 267, 37–51.CrossRefGoogle Scholar
  8. 8.
    Frank, R. and Overwin, H. (1996) SPOT synthesis. Epitope analysis with arrays of synthetic peptides prepared on cellulose membranes. Methods Mol. Biol. 66, 149–169.Google Scholar
  9. 9.
    Reimer, U., Reineke, U., and Schneider-Mergener, J. (2002) Peptide arrays: from macro to micro. Curr. Opin. Biotechnol. 13, 315–320.CrossRefGoogle Scholar
  10. 10.
    Frank, R. (2002) The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports—principles and applications. J. Immunol. Methods 267, 13–26.CrossRefGoogle Scholar
  11. 11.
    Reineke, U., Volkmer-Engert, R., and Schneider-Mergener, J. (2001) Applications of peptide arrays prepared by the SPOT-technology. Curr. Opin. Biotechnol. 12, 59–64.CrossRefGoogle Scholar
  12. 12.
    Sun, L., Rush, J., Ghosh, I., Maunus, J. R., and Xu, M.-Q. (2004) Producing peptide arrays for epitope mapping by intein-mediated protein ligation. Biotechniques 37, 430–443.Google Scholar
  13. 13.
    Ghosh, I., Sun, L., Evans, T. C., Jr., and Xu, M.-Q. (2004) An improved method for utilization of peptide substrates for antibody characterization and enzymatic assays. J. Immunol. Methods 293, 85–95.CrossRefGoogle Scholar
  14. 14.
    Xu, J., Sun, L., Ghosh, I., and Xu, M. Q. (2004) Western blot analysis of Src kinase assays using peptide substrates ligated to a carrier protein. Biotechniques 36, 976–981.Google Scholar
  15. 15.
    Evans, T. C., Jr., Benner, J., and Xu, M. Q. (1998) Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci. 7, 2256–2264.CrossRefGoogle Scholar
  16. 16.
    Evans, T. C., Jr. and Xu, M. Q. (1999) Intein-mediated protein ligation: harnessing nature’s escape artists. Biopolymers 51, 333–342.CrossRefGoogle Scholar
  17. 17.
    Muir, T. W., Sondhi, D., and Cole, P. A (1998) Expressed protein ligation: a general method for protein engineering. Proc. Natl. Acad. Sci. USA 95, 6705–6710.CrossRefGoogle Scholar
  18. 18.
    Chong, S., Mersha, F. B., Comb, D. G., et al. (1997) Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192, 271–281.CrossRefGoogle Scholar
  19. 19.
    Lesaicherre, M. L., Lue, R. Y., Chen, G. Y., Zhu, Q., and Yao, S. Q. (2002) Inteinmediated biotinylation of proteins and its application in a protein microarray. J. Am. Chem. Soc. 124, 8768–8769.CrossRefGoogle Scholar
  20. 20.
    Tan, L. P., Lue, R. Y., Chen, G. Y., and Yao, S. Q. (2004) Improving the inteinmediated, site-specific protein biotinylation strategies both in vitro and in vivo. Bioorg. Med. Chem. Lett. 14, 6067–6070.CrossRefGoogle Scholar
  21. 21.
    Sun, L., Ghosh, I., and Xu, M. Q. (2003) Generation of an affinity column for antibody purification by intein-mediated protein ligation. J. Immunol. Methods 282, 45–52.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Ming-Qun Xu
    • 1
  • Inca Ghosh
    • 1
  • Samvel Kochinyan
    • 1
  • Luo Sun
    • 1
  1. 1.New England BiolabsBeverly

Personalised recommendations