Advertisement

Microarrays pp 299-312 | Cite as

In Situ Synthesis of Peptide Microarrays Using Ink-Jet Microdispensing

  • Bogdan V. Antohe
  • Patrick W. Cooley
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 381)

Abstract

The study of protein-protein and protein-DNA interactions is critical to understand biological processes. This article presents the methodology to create peptide microarrays in situ for the high-throughput screening of complex biomolecules. The in situ ink-jet peptide synthesis results in a conservation of costly reagent and amino acids, whereas providing a means to produce denser peptide arrays. A smaller amount of test sample is required to observe interaction when using these high-density peptide arrays.

Key Words

High-throughput screening in situ synthesis ink-jet dispensing microdispensing peptide synthesis peptide microarray 

References

  1. 1.
    Min, D. H. and Mrksich, M. (2004) Peptide arrays: towards routine implementation. Curr. Opin. Chem. Biol. 8, 554–558.CrossRefGoogle Scholar
  2. 2.
    Panicker, R. C., Huang, X., and Shao, Q. Y. (2004) Recent advances in peptide-based microarray technologies. Comb. Chem. High Throughput Screen. 7, 547–556.Google Scholar
  3. 3.
    Fujii, K., Zhu, G., Liu, Y., et al. (2005) Kinase peptide specificity: improved determination and relevance to protein phosphorylation. Proc. Natl. Acad. Sci. USA 101, 13,744–13,749.CrossRefGoogle Scholar
  4. 4.
    Sun, H., Low, K. E., Woo, S., et al. (2005) Real-time protein kinase assay. Anal. Chem. 77, 2043–2049.CrossRefGoogle Scholar
  5. 5.
    Falsey, J. R., Renil, M., Park, S., Li, S., and Lam, K. S. (2001) Peptide and small molecule microarray for high throughput cell adhesion and functional assays. Bioconjug. Chem. 12, 346–353.CrossRefGoogle Scholar
  6. 6.
    Thorpe, D. S., Yeoman, H., Chan, A. W., Krchnak, V., Lebl, M., and Felder, S. (1999) Combinatorial chemistry reveals a new motif that binds the platelet fibrinogen receptor, gpIIbIIIa. Biochem. Biophys. Res. Commun. 256, 537–541.CrossRefGoogle Scholar
  7. 7.
    Bowditch, R. D., Tani, P., Foong, K. C., and McMilan, R. (1996) Characterization of autoantigenic epitopes on platelet glycoprotein Iib/IIIa using random peptide libraries, Blood 15, 4579–4584.Google Scholar
  8. 8.
    Swan, E. E., Popat, K. C., and Desai, T. A. (2005) Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion. Biomaterials 26, 1969–1976.CrossRefGoogle Scholar
  9. 9.
    Spear, M. A., Breakefield, X. O., Beltzer, J., et al. (2001) Isolation, characterization, and recovery of small peptide phage display epitopes selected against viable malignant glioma cells. Cancer Gene Ther. 8, 506–511.CrossRefGoogle Scholar
  10. 10.
    Houghten, R. A. (1985) General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids, Proc. Natl. Acad. Sci. USA 82, 5131–5135.CrossRefGoogle Scholar
  11. 11.
    Reid, J., Betney, R., Watt, K., and McEwan, I. J. (2003) The androgen receptor transactivation domain: the interplay between protein conformation and protein-protein interaction. Biochem. Soc. 31, 1042–1046.CrossRefGoogle Scholar
  12. 12.
    Huang, X., Pieczko, M. E., and Long, E. C. (1999) Combinatorial optimization of the DNA cleaving Ni(II) x Xaa-Xaa-His metallotripeptide domain. Biochemistry 38, 2160–2166.CrossRefGoogle Scholar
  13. 13.
    Pennington, M., Lam, K., and Cress, A. E. (1996) The use of combinatorial library method to isolate human tumor cell adhesion peptides. Mol. Diversity 2, 19–28.CrossRefGoogle Scholar
  14. 14.
    Frank, R. (1992) Spot-Synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48, 9217–9232.CrossRefGoogle Scholar
  15. 15.
    (1999) Sigma-Genosys custom SPOT’s technical manual, ver 3, Sigma-Genosys, The Woodlands, TX, p. 51.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Bogdan V. Antohe
    • 1
  • Patrick W. Cooley
    • 1
  1. 1.MicroFab Technologies, Inc.Plano

Personalised recommendations