Skip to main content

Detection of Single-Nucleotide Polymorphisms in Cancer-Related Genes by Minisequencing on a Microelectronic DNA Chip

  • Protocol
Microarrays

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 381))

  • 1374 Accesses

Abstract

The ability to realize simultaneous genotyping of multiple single-nucleotide polymorphisms or mutations is valuable in DNA samples from complex multigenic pathologies such as cancer. In this way, the complexity (number of hybridization units per chip) of the developed MICAM? DNA chip, and the orientation of the grafted pyrrole oligonucleotides, make it particularly well adapted to the analysis of single-nucleotide polymorphisms/mutations in multiple potential tumoral markers. The proposed genotyping methodology is based on solid-phase minisequencing, where oligonucleotides are designed to anneal immediately upstream of the polymorphism sites, and labeled dideoxynucleotides are used as substrates for polymerase extension. The developed assay was applied to the analysis of the TP53 codon 72 polymorphism on DNA from cell lines and human colorectal samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diamond, J. (2003) The double puzzle of diabetes. Nature 423, 599–602.

    Article  CAS  Google Scholar 

  2. Day, I. N. and Wilson, D. I. (2001) Science, medicine, and the future: genetics and cardiovascular risk. BMJ 323, 1409–1412.

    Article  CAS  Google Scholar 

  3. Fearon, E. R. and Vogelstein, B. (1990) A genetic model for colorectal tumorigenesis. Cell 61, 759–767.

    Article  CAS  Google Scholar 

  4. Nathanson, K. L., Wooster, R., and Weber, B. L. (2001) Breast cancer genetics: what we know and what we need. Nat. Med. 7, 552–556.

    Article  CAS  Google Scholar 

  5. Abate-Shen, C. and Shen, M. M. (2000) Molecular genetics of prostate cancer. Genes Dev. 14, 2410–2434.

    Article  CAS  Google Scholar 

  6. Buyru, N., Budak, M., Yazici, H., and Dalay, N. (2003) p53 gene mutations are rare in human papillomavirus-associated colon cancer. Oncol. Rep. 10, 2089–2092.

    CAS  Google Scholar 

  7. Kleyn, P. W. and Vesell, E. S. (1998) Genetic variation as a guide to drug development. Science 281, 1820–1821.

    Article  CAS  Google Scholar 

  8. Andreyev, H. J., Norman, A. R., Cunningham, D., et al. (2001) Kirsten ras mutations in patients with colorectal cancer: the “RASCAL II” study. Br. J. Cancer 85, 692–696.

    Article  CAS  Google Scholar 

  9. Hippo, Y., Taniguchi, H., Tsutsumi, S., et al. (2002) Global gene expression analysis of gastric cancer by oligonucleotide microarrays. Cancer Res. 62, 233–240.

    CAS  Google Scholar 

  10. Wang, D. G., Fan, J. B., Siao, C. J., et al. (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280, 1077–1082.

    Article  CAS  Google Scholar 

  11. Pastinen, T., Kurg, A., Metspalu, A., Peltonen, L., and Syvanen, A. C. (1997) Minisequencing: a specific tool for DNA analysis and diagnostics on oligonucleotide arrays. Genome Res. 7, 606–614.

    CAS  Google Scholar 

  12. Kwiatkowski, R. W., Lyamichev, V., de Arruda, M., and Neri, B. (1999) Clinical, genetic, and pharmacogenetic applications of the Invader assay. Mol. Diagn. 4, 353–364.

    Article  CAS  Google Scholar 

  13. Landegren, U., Kaiser, R., Sanders, J., and Hood, L. (1988) A ligase-mediated gene detection technique. Science 241, 1077–1080.

    Article  CAS  Google Scholar 

  14. Barany, F. (1991) Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc. Natl. Acad. Sci. USA 88, 189–193.

    Article  CAS  Google Scholar 

  15. Nordstrom, T., Nourizad, K., Ronaghi, M., and Nyren, P. (2000) Method enabling pyrosequencing on double-stranded DNA. Anal. Biochem. 282, 186–193.

    Article  CAS  Google Scholar 

  16. Syvanen, A. C., Aalto-Setala, K., Harju, L., Kontula, K., and Soderlund, H. (1990) A primer-guided nucleotide incorporation assay in the genotyping of apolipoprotein E. Genomics 8, 684–692.

    Article  CAS  Google Scholar 

  17. Chen, X. and Kwok, P. Y. (1997) Template-directed dye-terminator incorporation (TDI) assay: a homogeneous DNA diagnostic method based on fluorescence resonance energy transfer. Nucleic Acids Res. 25, 347–353.

    Article  Google Scholar 

  18. Pastinen, T., Raitio, M., Lindroos, K., Tainola, P., Peltonen, L., and Syvanen, A. C. (2000) A system for specific, high-throughput genotyping by allele-specific primer extension on microarrays. Genome Res. 10, 1031–1042.

    Article  CAS  Google Scholar 

  19. O’Meara, D., Ahmadian, A., Odeberg, J., and Lundeberg, J. (2002) SNP typing by a pyrase-mediated allele-specific primer extension on DNA microarrays. Nucleic Acids Res. 30, E75.

    Article  Google Scholar 

  20. Lopez-Crapez, E., Bazin, H., Chevalier, J., Trinquet, E., Grenier, J., and Mathis, G. (2005) A separation-free assay for the detection of mutations: combination of homogeneous time-resolved fluorescence and minisequencing. Hum. Mutat. 25, 468–475.

    Article  CAS  Google Scholar 

  21. Syvanen, A. C. (1999) From gels to chips: “minisequencing” primer extension for analysis of point mutations and single nucleotide polymorphisms. Hum. Mutat. 13, 1–10.

    Article  CAS  Google Scholar 

  22. Tonisson, N., Zernant, J., Kurg, A., et al. (2002) Evaluating the arrayed primer extension resequencing assay of TP53 tumor suppressor gene. Proc. Natl. Acad. Sci. USA 99, 5503–5508.

    Article  CAS  Google Scholar 

  23. Lopez-Crapez, E., Livache, T., Marchand, J., and Grenier, J. (2001) K-ras mutation detection by hybridization to a polypyrrole DNA chip. Clin. Chem. 47, 186–194.

    CAS  Google Scholar 

  24. Livache, T., Roget, A., Dejean, E., Barthet, C., Bidan, G., and Teoule, R. (1994) Preparation of a DNA matrix via an electrochemically directed copolymerization of pyrrole and oligonucleotides bearing a pyrrole group. Nucleic Acids Res. 11, 2915–2921.

    Article  Google Scholar 

  25. Dumont, P., Leu, J. I., Della Pietra, A. C., George, D. L., and Murphy, M. (2003) The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nature Genet. 33, 357–365.

    Article  CAS  Google Scholar 

  26. Sullivan, A., Syed, N., Gasco, M., et al. (2004) Polymorphism in wild-type TP53 modulates response to chemotherapy in vitro and in vivo. Oncogene 23, 3328–3337.

    Article  CAS  Google Scholar 

  27. Kurg, A., Tonisson, N., Georgiou, I., Shumaker, J., Tollett, J., and Metspalu, A. (2000) Arrayed primer extension: solid-phase four-color DNA resequencing and mutation detection technology. Genet. Test. 9, 1–7.

    Article  Google Scholar 

  28. Dubiley, S., Kirillov, E., and Mirzabekov, A. (1999) Polymorphism analysis and gene detection by minisequencing on an array of gel-immobilized primers. Nucleic Acids Res. 27, E19.

    Article  CAS  Google Scholar 

  29. Caillat, P., David, D., Belleville, M., et al. (1999) Biochips on CMOS: an active matrix address array for DNA analysis. Sens. Actuator B 160, 154–162.

    Article  Google Scholar 

  30. Livache, T., Roget, A., Dejean, E., Barthet, C., Bidan, G., and Teoule, R. (1994) Preparation of a DNA matrix via an electrochemically directed copolymerization of pyrrole and oligonucleotides bearing a pyrrole group. Nucleic Acids Res. 11, 2915–2921.

    Article  Google Scholar 

  31. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Analysis and cloning of eukaryotic genomic DNA, in Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, NY, pp. 9–16.

    Google Scholar 

  32. Thirion, A., Rouanet, P., Thezenas, S., Detournay, D., Grenier, J., Lopez-Crapez, E. (2002) Interest of investigating TP53 status in breast cancer by four different methods. Oncol. Rep. 9, 1167–1172.

    CAS  Google Scholar 

  33. Merlo, G. R., Cropp, C. S., Callahan, R., and Takahashi, T. (1991) Detection of loss of heterozygosity in tumor DNA samples by PCR. Biotechniques 11, 166–168.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Ho-Pun-Cheung, A., Abaibou, H., Cleuziat, P., Lopez-Crapez, E. (2007). Detection of Single-Nucleotide Polymorphisms in Cancer-Related Genes by Minisequencing on a Microelectronic DNA Chip. In: Rampal, J.B. (eds) Microarrays. Methods in Molecular Biology™, vol 381. Humana Press. https://doi.org/10.1007/978-1-59745-303-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-303-5_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-589-7

  • Online ISBN: 978-1-59745-303-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics