Microarrays pp 247-265 | Cite as

Detecting Ligated Fragments on Oligonucleotide Microarrays

Optimizing Chip Design, Array Multiplex Ligation-Dependent Probe Amplification Modification, and Hybridization Parameters
  • Ian R. Berry
  • Carol A. Delaney
  • Graham R. Taylor
Part of the Methods in Molecular Biology™ book series (MIMB, volume 381)


Copy-number polymorphisms at specific genomic loci have been implicated in numerous human and animal disease phenotypes. Multiplex ligation-dependent probe amplification (MLPA) is a molecular genetic technique allowing targeted quantification of genomic copy-number changes (deletions and duplications), with potential for multiplexing up to 50 loci in one assay, and resolution down to the single nucleotide level. Modification of the MLPA technique to include Cy-labeled amplification primers permits parallel product detection by capillary electrophoresis and microarray hybridization. Detection and quantification of products by sequencespecific hybridization rather than size-specific capillary electrophoresis increases the potential for probe multiplexing possible in one assay and also allows for more flexible and efficient MLPA probe design. Protocols for the printing of synthetic oligonucleotide probe-sets for the detection of MLPA products, MLPA-probe amplification using array-compatible primers, and parallel product detection by quantitative capillary electrophoresis and microarray hybridization have been optimized.

Key Words

Copy number Cy-labeled PCR MLPA oligonucleotide array printing quantitative capillary electrophoresis 


  1. 1.
    Lipshutz, R. J., Fodor, S. P., Gingeras, T. R., and Lockhart, D. J. (1999) High density synthetic oligonucleotide arrays. Nat. Genet. 21, 20–24.CrossRefGoogle Scholar
  2. 2.
    Ji, M., Hou, P., Li, S., He, N., and Lu, Z. (2004) Microarray-based method for genotyping of functional single nucleotide polymorphisms using dual-color fluorescence hybridization. Mutat. Res. 548, 97–105.CrossRefGoogle Scholar
  3. 3.
    Favis, R., Day, J. P., Gerry, N. P., Phelan, C., Narod, S., and Barany, F. (2000) Universal DNA array detection of small insertions and deletions in BRCA1 and BRCA2. Nat. Biotechnol. 18, 561–564.CrossRefGoogle Scholar
  4. 4.
    Forster, T., Costa, Y., Roy, D., Cooke, H. J., and Maratou, K. (2004) Triple-target microarray experiments-a novel experimental strategy. BMC Genomics 5, 13.CrossRefGoogle Scholar
  5. 5.
    Lupski, J. R. (1998) Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet. 10, 417–422.CrossRefGoogle Scholar
  6. 6.
    Taylor, C. F., Charlton, R. S., Burn, J., Sheridan, E., and Taylor, G. R. (2003) Genomic deletions in MSH2 or MLH1 are a frequent cause of hereditary nonpolyposis colorectal cancer: identification of novel and recurrent deletions by MLPA. Hum. Mutat. 22, 428–433.CrossRefGoogle Scholar
  7. 7.
    Schouten, J. P., McElgunn, C. J., Waaijer, R., Zwijnenburg, D., Diepvens, F., and Pals, G. (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 30, E57.CrossRefGoogle Scholar
  8. 8.
    White, S. J., Vink, G. R., Kriek, M., et al. (2004) Two-color multiplex ligationdependent probe amplification: detecting genomic rearrangements in hereditary multiple exostoses. Hum. Mutat. 24, 86–92.CrossRefGoogle Scholar
  9. 9.
    Oligonucleotide Properties Calculator Scholar
  10. 10.
    Generating Raw Data From Your Sequencer (ABi-3100, Beckman CEQ-8000) Scholar
  11. 11.
    Gene Dosage (including Regression-enhanced MLPA data analysis) Scholar
  12. 12.
    Analysis of Raw MLPA Data by Statistical Methods. Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Ian R. Berry
    • 1
  • Carol A. Delaney
    • 1
  • Graham R. Taylor
    • 1
  1. 1.Regional DNA Lab, Regional Genetics ServiceSt. James’s University HospitalLeedsUK

Personalised recommendations