Array Technology—An Overview
  • Hartmut Seliger
Part of the Methods in Molecular Biology™ book series (MIMB, volume 381)


Microarray technology has its roots in high-throughput parallel synthesis of biomacromolecules, combined with combinatorial science. In principle, the preparation of arrays can be performed either by in situ synthesis of biomacromolecules on solid substrates or by spotting of ex situ synthesized biomacromolecules onto the substrate surface. The application of microarrays includes spatial addressing with target (macro) molecules and screening for interactions between immobilized probe and target. The screening is simplified by the microarray format, which features a known structure of every immobilized library element. The area of nucleic acid arrays is best developed, because such arrays are allowed to follow the biosynthetic pathway from genes to proteins, and because nucleic acid hybridization is a most straightforward screening tool. Applications to genomics, transcriptomics, proteomics, and glycomics are currently in the foreground of interest; in this postgenomic phase they are allowed to gain new insights into the molecular basis of cellular processes and the development of disease.

Key Words

Applications array technology cell and tissue arrays combinatorial science DNA arrays overview roots potential and problems preparation protein arrays saccharide arrays 


  1. 1.
    Cramer, F. (1979) Fundamental complexity. A concept in biological sciences and beyond. Interdiscip. Sci. Rev. 4, 132–139.Google Scholar
  2. 2.
    DeWitt, S. H., Kiely, J. S., Stankovic, C. J., Schroeder, M. C., Cody, D. M. R., and Pavia, M. R. (1993) Diversomers: an approach to nonpeptide, nonoligomeric chemical diversity. Proc. Natl. Acad. Sci. USA 90, 6909–6913.Google Scholar
  3. 3.
    Hsieh-Wilson, L. C., Xiang, X.-D., and Schultz, P. G. (1996) Lessons from the immune system: from catalysis to materials science. Acc. Chem. Res. 29, 164–170.Google Scholar
  4. 4.
    Gillam, S., Waterman, K., and Smith, M. (1975) The base-pairing specificity of cellulose-pdT9. Nucleic Acids Res. 2, 625–634.Google Scholar
  5. 5.
    Dodgson, J. B. and Wells, R. D. (1977) Synthesis and thermal melting behavior of oligomer-polymer complexes containing defined lengths of mismatched dAdG and dG-dG nucleotides. Biochemistry 16, 2367–2374.Google Scholar
  6. 6.
    Furka, A., Sebestyen, F., Asgedom, M., and Dibo, G. (1988) More peptides by less labour, Abstr. 10th International Symposium of the Medical Chemist, Budapest, pp. 288.Google Scholar
  7. 7.
    Furka, A., Sebestyen, F., Asgedom, M., and Dibo, G. (1988) Cornucopia of peptides by synthesis, in Highlights of Modern Biochemistry, Proceedings of the 14th International Congress of Biochemistry, VSP. Utrecht 5, pp. 47.Google Scholar
  8. 8.
    Furka, A., Sebestyen, F., Asgedom, M., and Dibo, G. (1991) General method for rapid synthesis of multicomponent peptide mixtures. Int. J. Pep. Protein Res. 37, 487–493.Google Scholar
  9. 9.
    Southern, E., Mir, K., and Shchepinov, M. (1999) Molecular interactions on microarrays. Nat. Genet. 21, 5–9.Google Scholar
  10. 10.
    Gerhold, D., Rushmore, T., and Caskey, C. T. (1999) DNA chip: promising toys have become powerful tools. Trends Biochem. Sci. 24, 168–173.Google Scholar
  11. 11.
    Ekins, R. and Chu, F. W. (1999) Microarrays: their origins and applications. Trends Biotechnol. 17, 217–218.Google Scholar
  12. 12.
    Lockhart, D. J. and Winzeler, E. A. (2000) Genomics, gene expression and DNA arrays. Nature 405, 827–836.Google Scholar
  13. 13.
    Schena, M. (ed.) (2002) Microarray Analysis. Wiley & Sons, New York.Google Scholar
  14. 14.
    Schena, M. and Davies, R. W. (2002) Genes, genomes and chips, in DNA Microarrays: A Practical Approach, (Schena, M., ed.), Oxford University Press, New York, pp. 1–16.Google Scholar
  15. 15.
    Lipshutz, R. J., Fodor, S. P. A., Gingeras, T. R., and Lockhart, D. J. (1999) High density synthetic oligonucleotide arrays. Nat. Genet. Suppl. 21, 20–24.Google Scholar
  16. 16.
    McGall, G. H. and Christians, F. C. (2002) High-density genechip oligonucleotide probe arrays. Adv. Biochem. Eng. Biotechnol. 77, 21–42.Google Scholar
  17. 17.
    Chaudhuri, J. D. (2005) Genes arrayed out for you: the amazing world of microarrays. Med. Sci. Monit. 11, RA52–RA62.Google Scholar
  18. 18.
    Földes-Papp, Z., Kinjo, M., Tamura, M., Birch-Hirschfeld, E., Demel, U., and Tilz, G. P. (2005) An ultrasensitive way to circumvent PCR-based allele distinction: direct probing of genomic DNA by solution phase hybridization down to femtomolar allele concentrations and less using two-color fluorescence cross-correlation spectroscopy. Exp. Mol. Pathol. 78, 177–189.Google Scholar
  19. 19.
    Epstein, J. R., Brian, I., and Walt, D. R. (2002) Fluorescence-based nucleic acid detection and microarrays. Anal. Chim. Acta 469, 3–33.Google Scholar
  20. 20.
    Drummond, T. G., Hill, M. G., and Barton, J. K. (2003) Electrochemical DNA sensors. Nat. Biotechnol. 21, 1192–1199.Google Scholar
  21. 21.
    Khorana, H. G. (1979) Total synthesis of a gene. Science 203, 614–625.Google Scholar
  22. 22.
    Merrifield, R. B. (1963) Solid-phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149–2154.Google Scholar
  23. 23.
    Letsinger, R. L. and Kornet, M. J. (1963) Popcorn polymer as a support in multistep synthesis. J. Am. Chem. Soc. 85, 3045–3046.Google Scholar
  24. 24.
    Letsinger, R. L. and Mahadevan, V. (1965) Oligonucleotide synthesis on a polymer support. J. Am. Chem. Soc. 87, 3526–3527.Google Scholar
  25. 25.
    Astell, C. R. and Smith, M. (1972) Synthesis and properties of oligonucleotidecellulose columns. Biochemistry 11, 4114–4120.Google Scholar
  26. 26.
    Suggs, S. V., Wallace, R. B., Hirose, T., Kawashima, E. H., and Itakura, K. (1981) Use of synthetic oligonucleotides as hybridization probes: isolation of cloned cDNA sequences for human beta 2-microglobulin. Proc. Natl. Acad. Sci. USA 78, 6613–6617.Google Scholar
  27. 27.
    Wallace, R. B., Johnson, M. J., Hirose, T., Miyake, T., Kawashima, E. H., and Itakura, K. (1981) The use of synthetic oligonucleotides as hybridization probes. II. Hybridization of oligonucleotides of mixed sequence to rabbit beta-globin DNA. Nucl. Acids Res. 9, 879–894.Google Scholar
  28. 28.
    Letsinger, R. L. and Lunsford, W. B. (1976) Synthesis of thymidine oligonucleotides by phosphite triester intermediates. J. Am. Chem. Soc. 98, 3656–3661.Google Scholar
  29. 29.
    Caruthers, M. H. (1985) Gene synthesis machines: DNA chemistry and its uses. Science 230, 281–285.Google Scholar
  30. 30.
    Itakura, K., Rossi, J. J., and Wallace, R. B. (1984) Synthesis and the use of synthetic oligonucleotides. Annu. Rev. Biochem. 53, 323–356.Google Scholar
  31. 31.
    Tanaka, T. and Letsinger, R. L. (1982) Syringe method for stepwise chemical synthesis of oligonucleotides. Nucleic Acids Res. 10, 3249–3260.Google Scholar
  32. 32.
    Seliger, H., Scalfi, C., and Eisenbeiss, F. (1983) An improved syringe technique for the preparation of oligonucleotides of defined sequence. Tetrahedron Lett. 24, 4963–4966.Google Scholar
  33. 33.
    Frank, R., Heikens, W., Heisterberg-Moutsis, G., and Blöcker, H. (1983) A new general approach for the simultaneous chemical synthesis of large numbers of oligonucleotides: segmental solid supports. Nucleic Acids Res. 11, 4365–4377.Google Scholar
  34. 34.
    Seliger, H., Herold, J., Kotschi, U., Lyons, J., Schmidt, G., and Eisenbeiss, F. (1987) Semimechanized simultaneous synthesis of multiple oligonucleotide fragments. Nucleosides Nucleotides 6, 137–146.Google Scholar
  35. 35.
    Bannwarth, W. and Jaiza, P. (1986) A system for the simultaneous chemical synthesis of different DNA fragments on solid support. DNA 5, 413–419.Google Scholar
  36. 36.
    Seliger, H., Kotschi, U., Lyons, J., and Singrün, B. (1989) Automatenunterstützte Simultansynthese von DNA-Fragmenten und ihre biomedizinische Anwendung. BioEngineering 5, 144–147.Google Scholar
  37. 37.
    Cheng, J.-Y., Chen, H.-H., Kao, Y.-S., and Peck, K. (2002) High throughput parallel synthesis of oligonucleotides with 1536 channel synthesizer. Nucleic Acids Res. 30, E93.Google Scholar
  38. 38.
    Hudson, D. (1999) Matrix assisted synthetic transformations: a mosaic of diverse contributions. I. The pattern emerges. J. Comb. Chem. 1, 333–360.Google Scholar
  39. 39.
    Hudson, D. (1999) Matrix assisted synthetic transformations: a mosaic of diverse contributions. II. The pattern is completed. J. Comb. Chem. 1, 403–457.Google Scholar
  40. 40.
    Geysen, H. M., Meloen, R. H., and Barteling, S. J. (1984) Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl. Acad. Sci. USA 81, 3998–4002.Google Scholar
  41. 41.
    Lam, K. S., Salmon, S. E., Hersh, E. M., Hruby, V. J., Kazmierski, W. M., and Knapp, R. J. (1991) A new type of synthetic peptide library for identifying ligandbinding activity. Nature 354, 82–84.Google Scholar
  42. 42.
    Rotte, B., Hinz, M., Bader, R., Astriab, A., Markiewicz, W. T., and Seliger, H. (1996) Synthetic oligonucleotide combinatorial libraries with single bead sequence identification. Collect. Czech. Chem. Commun. 61, S311–S314.Google Scholar
  43. 43.
    Seliger, H., Bader, R., Hinz, M., et al. (2000) Polymer-supported nucleic acid fragments. Tools for biotechnology and biomedical research. Reactive Functional Polymers 43, 325–339.Google Scholar
  44. 44.
    Brenner, S. (1991) Symposium on natural and artificial processes, Göttingen, cited from: von Kiedrowski, G. Angew. Chem. 103, 831–840.Google Scholar
  45. 45.
    Recent patents in microarrays (2001) Nat. Biotechnol. 19, 385.Google Scholar
  46. 46.
    Schena, M. (ed.) (2000) Microarray Biochip & Technology. BioTechniques/Eaton Publishing, Natick, MA.Google Scholar
  47. 47.
    Rampal, J. B. (ed.) (2001) DNA Arrays. Humana, Totowa, NJ.Google Scholar
  48. 48.
    Bowtell, D. and Sambrook, J. (eds.) (2002) DNA Microarrays: A Molecular Cloning Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  49. 49.
    Hardimann, G. (2003) Microarrays Methods and Applications: Nuts & Bolts. DNA Press, Eagleville, PA.Google Scholar
  50. 50.
    Causton, H. C., Quackenbush, J., and Brazma, A. (2003) Microarray Gene Expression Data Analysis: A Beginner’s Guide. Blackwell, Oxford.Google Scholar
  51. 51.
    Blalock, E. M. (ed.) (2003) A Beginner’s Guide to Microarray. Kluwer Academic, Norwell, MA.Google Scholar
  52. 52.
    Simon, R. M., Edward, L., Korn, E. L., et al. (2004) Design and Analysis of DNA Microarray Investigations. Springer, New York.Google Scholar
  53. 53.
    Schena, M. (2004) Protein Microarrays. Jones & Bartless, Sudbury, MA.Google Scholar
  54. 54.
    Maskos, U. and Southern, E. M. (1992) Parallel analysis of oligodeoxyribonucleotide (oligonucleotide) interactions. I. Analysis of factors influencing oligonucleotide duplex formation. Nucleic Acids Res. 20, 1675–1678.Google Scholar
  55. 55.
    Maskos, U. and Southern, E. M. (1992) Oligonucleotide hybridizations on glass supports: a novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesised in situ. Nucleic Acids Res. 20, 1679–1684.Google Scholar
  56. 56.
    Southern, E. M., Maskos, U., and Elder, J. K. (1992) Analyzing and comparing nucleic acid sequences by hybridization to arrays of oligonucleotides: evaluation using experimental models. Genomics 13, 1008–1017.Google Scholar
  57. 57.
    Maskos, U. and Southern, E. M. (1993) A novel method for the analysis of multiple sequence variants by hybridisation to oligonucleotides. Nucleic Acids Res. 21, 2267–2268.Google Scholar
  58. 58.
    Maskos, U. and Southern, E. M. (1993) A novel method for the parallel analysis of multiple mutations in multiple samples. Nucleic Acids Res. 21, 2269–2270.Google Scholar
  59. 59.
    Southern, E. M., Case-Green, S. C., Elder, J. K., et al. (1994) Arrays of complementary oligonucleotides for analysing the hybridisation behaviour of nucleic acids. Nucleic Acids Res. 22, 1368–1373.Google Scholar
  60. 60.
    Wehnert, M. S., Matson, R. S., Rampal, J. B., Coassin, P. J., and Caskey, C. T. (1994) A rapid scanning strip for tri-and dinucleotide short tandem repeats. Nucleic Acids Res. 22, 1701–1704.Google Scholar
  61. 61.
    Matson, R. S., Rampal, J., Pentoney, S. L. Jr., Anderson, P. D., and Coassin, P. (1995) Biopolymer synthesis on polypropylene supports: oligonucleotide arrays. Anal. Biochem. 224, 110–116.Google Scholar
  62. 62.
    Seliger, H., Bader, R., Birch-Hirschfeld, E., et al. (1995) Surface reactive polymers for special applications in nucleic acid synthesis. Reactive Functional Polymers 26, 119–126.Google Scholar
  63. 63.
    Bader, R., Betz, O., Brugger, H., et al. (1998) An automated method to create a one dimensional array of chemically synthesized oligonucleotides, in Microreaction Technology, (Ehrfeld, H., ed.), Springer, Berlin, pp. 120–123.Google Scholar
  64. 64.
    Fodor, S. P. A., Read, J. L., Pirrung, C., Stryer, L., Lu, A. T., and Solas, D. (1991) Light-directed spatially addressable parallel chemical synthesis. Science 251, 767–773.Google Scholar
  65. 65.
    Lipshutz, R. J., Fodor, S. P., Gingeras, T. R., and Lockhart, D. J. (1999) High density synthetic oligonucleotide arrays. Nat. Genet. 21, 20–24.Google Scholar
  66. 66.
    McGall, G. H. and Christians, F. C. (2002) High-density genechip oligonucleotide probe arrays. Adv. Biochem. Eng. Biotechnol. 77, 21–42.Google Scholar
  67. 67.
    Pirrung, M. C. and Bradley, J.-C. (1995) Comparison of methods for photochemical phosphoramidite-based DNA synthesis. J. Org. Chem. 60, 6270–6276.Google Scholar
  68. 68.
    Beier, M. and Hoheisel, J. D. (1999) New developments in light-controlled synthesis of DNA-arrays. Nucleosides Nucleotides 18, 1301–1304.Google Scholar
  69. 69.
    Walbert, S., Pfleiderer, W., and Steiner, U. E. (2001) Photolabile protecting groups for nucleosides: mechanistic studies of the 2-(2-nitrophenyl)ethyl group. Helv. Chim. Acta 84, 1601–1611.Google Scholar
  70. 70.
    Beecher, J. E., McGall, G. H., and Goldberg, M. J. (1997) Chemically amplified photolithography for the fabrication of high density oligonucleotide arrays. Polymeric Mater. Sci. Eng. 76, 597–598.Google Scholar
  71. 71.
    Gao, X., LeProust, E., Zhang, H., et al. (2001) A flexible light-directed DNA chip synthesis gated by deprotection using solution photogenerated acids. Nucleic Acids Res. 29, 4744–4750.Google Scholar
  72. 72.
    Ermantraut, E., Schulz, T., Tuchscheerer, J., et al. (1998) Fluorescence array biosensor—biochemistry, in Micro Total Analysis Systems 1998: Proceedings of the Utas’ 98 Workshop, Banff, 1998 (Harrison, D. J. and van den Berg, A., eds.), Kluwer Academic Publisher, Dordrecht, pp. 217–221.Google Scholar
  73. 73.
    Weiler, J., Gausepohl, H., Hauser, N., Jensen, O. N., and Hoheisel, J. D. (1997) Hybridisation-based DNA screening on peptide nucleic acid (PNA) oligonuclotide arrays. Nucleic Acids Res. 25, 2792–2799.Google Scholar
  74. 74.
    Smith, C. (2005) Genomics: getting down to details. Nature 435, 991–994.Google Scholar
  75. 75.
    Singh-Gasson, S., Green, R. D., Yue, Y., et al. (1999) Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat. Biotechnol. 17, 974–978.Google Scholar
  76. 76.
    Nuwaysir, E. F., Huang, W., Albert, T. J., et al. (2002) Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. Genome Res. 12, 1749–1755.Google Scholar
  77. 77.
    Wöll, D., Walbert, S., Stengele, K.-P., et al. (2002) More efficient photolithographic synthesis of DNA-chips by photosensitization, Poster at EuroBiochips, Berlin. 2002, and at International Round Table: Nucleosides, Nucleotides Nucleic Acids, Leuven, 2002.Google Scholar
  78. 78.
    Blanchard, A. P. (1998) Synthetic DNA arrays, in Genetic Engineering 20 (Setlow, J. K., ed.) Plenum Press, New York, pp. 111–123.Google Scholar
  79. 79.
    Butler, J. H., Cronin, M., Anderson, K. M., et al. (2001) In situ synthesis of oligonucleotide arrays by using surface tension. J. Am. Chem. Soc. 123, 8887–8894.Google Scholar
  80. 80.
    Theriault, T. P., Winder, S. C., and Gamble, R. C. (1999) Application of ink-jet printing technology to the manufacture of molecular arrays, in DNA Microarrays: A Practical Approach, (Schena, M., ed.), Oxford University Press, New York, pp. 101–119.Google Scholar
  81. 81.
    Adamschik, M., Hinz, M., Maier, C., et al. (2001) Diamond micro system for biochemistry, Diamond Related Mater. 10, 722–730.Google Scholar
  82. 82.
    Vinet, F., Hoang, A., Mittler, F., and Rosilio, C. (2000) A new strategy for in situ synthesis of 3(10) oligonucleotide arrays for DNA chip technology, in Proceedings, Congress on Microelectronics, Microsystems and Nanotechnology, (MMN 2000) (Nassiopoulou, A. G. and Ziaumi, X., eds.) World Scientific, Athens, Greece, pp. 3–12.Google Scholar
  83. 83.
    Hughes, T. R., Mao, M., Jones, A. R., et al. (2001) Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 19, 342–347.Google Scholar
  84. 84.
    Xia, Y. N. and Whitesides, G. M. (1998) Soft lithography. Angew. Chem. Int. Ed. Engl. 37, 550–575.Google Scholar
  85. 85.
    Ermantraut, J., Wölfl, S., and Saluz, H.-P. (1997) Herstellung einer Matrixgebundenen miniaturisierten kombinatorischen Poly-and Oligomerbibliothek, Ger. Patent DE 19543232 A1.Google Scholar
  86. 86.
    Xiao, P. F., He, N. Y., Liu, Z. C., He, Q. G., Sun, X., and Lu, Z. H. (2002) In situ synthesis of oligonucleotide arrays by using soft lithography. Nanotechnology 13, 756–762.Google Scholar
  87. 87.
    Gillespie, D. and Spiegelman, S. (1965) Quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J. Mol. Biol. 12, 829–842.Google Scholar
  88. 88.
    Belosludtsev, Y., Iverson, B., Lemeshko, S., et al. (2001) DNA microarrays based on noncovalent oligonucleotide attachment and hybridization in two dimensions. Anal. Biochem. 292, 250–256.Google Scholar
  89. 89.
    Dequaire, M. and Heller, A. (2002) Amperometric detection of nucleic acids in 25 µL droplets on screen printed electrodes. Anal. Chem. 74, 4370–4377.Google Scholar
  90. 90.
    Avidin-Biotin Technology. (1990) Meth. Enzymol. 184, (Wilchek, M. and Bayer, E. A., eds.) Academic Press, Inc. San Diego, CA.Google Scholar
  91. 91.
    Southern, E. M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517.Google Scholar
  92. 92.
    Alwine, J. C., Kemp, D. J., and Stark, G. R. (1977) Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc. Natl. Acad. Sci. USA 74, 5350–5354.Google Scholar
  93. 93.
    Kafatos, F. C., Jones, C. W., and Efstratiadis, A. (1979) Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids Res. 7, 1541–1552.Google Scholar
  94. 94.
    Seliger, H., Hinz, M., and Happ, E. (2003) Arrays of immobilized oligonucleotides-contributions to nucleic acids technology. Curr. Pharm. Biotechnol. 4, 379–395.Google Scholar
  95. 95.
    Kusnezow, W. and Hoheisel, J. D. (2003) Solid support for microarray immunoassays. J. Mol. Recognit. 16, 165–176.Google Scholar
  96. 96.
    Benters, R., Niemeyer, C. M., Drutschmann, D., Blohm, D., and Wöhrle, D. (2002) DNA microarrays with PAMAM dendritic linker systems. Nucleic Acids Res. 30, E10.Google Scholar
  97. 97.
    Ameringer, T., Hinz, M., Mourran, C., Seliger, H., Groll, J., and Moeller, M. (2005) Ultrathin functional star PEG coatings for DNA microarrays. Biomacromolecules 6, 1819–1823.Google Scholar
  98. 98.
    Riepl, M., Enander, K., Liedberg, B., Schäferling, M., Kruschina, M., and Ortigao, F. (2002) Functionalized surfaces of mixed alkanethiols on gold as a platform for oligonucleotide microarrays. Langmuir 18, 7016–7023.Google Scholar
  99. 99.
    Li, Z., Jin, R., Mirkin, C. A., and Letsinger, R. L. (2002) Multiple thiol-anchor capped DNA—gold nanoparticle conjugates. Nucleic Acids Res. 30, 1558–1562.Google Scholar
  100. 100.
    Prokein, T., Hinz, M., and Seliger, H. (2004) Immobilisation of oligonucleotides to gold surfaces via chain extension with lipoic acid residues. Poster 15/I, Oligonucleotide and peptide technology conferences (TIDES), Las Vegas, USA.Google Scholar
  101. 101.
    Gabig, M. and Węgrzyn, G. (2001) An introduction to DNA chips: principles, technology, applications and analysis. Acta Biochim. Pol. 48, 615–622.Google Scholar
  102. 102.
    Nakauchi, G., Ohtani, Y., Inaki, Y., and Miyata, M. (2002) DNA microarray fabrication by photo-sensitive polyvinyl alcohol. J. Photopolymer Sci. Technol. 15, 109–110.Google Scholar
  103. 103.
    Glazer, M., Fidanza, J., McGall, G., and Frank, C. (2001) Colloidal silica films for high-capacity DNA probe arrays. Chem. Mater. 13, 4773–4782.Google Scholar
  104. 104.
    Shamansky, L. M., Davis, C. B., Stuart, J. K., and Kuhr, W. G. (2001) Immobilization and detection of DNA on microfluidic chips. Talanta 55, 909–918.Google Scholar
  105. 105.
    Beier, M., Baum, M., Rebscher, H., Mauritz, R., Wixmerten, A., and Stähler, P. F. (2001) Exploring nature’s plasticity with a flexible probing tool, and finding new ways for its electronic distribution. Biochem. Soc. Trans. 30, 78–82.Google Scholar
  106. 106.
    Yuen, P. K., Li, G., Bao, Y., and Müller, U. R. (2003) Microfluidic devices for fluidic circulation and mixing improve hybridization signal intensity on DNA arrays. Lab. Chip 3, 46–50.Google Scholar
  107. 107.
    Peterson, D. S. (2005) Solid supports for microanalytical systems. Lab. Chip 5, 132–139.Google Scholar
  108. 108.
    Elghanian, R., Xu, Y., McGowen, J., et al. (2001) The use and evaluation of 2 + 2 photoaddition in immobilization of oligonucleotides on a three dimensional hydrogel matrix. Nucleosides Nucleotides Nucleic Acids 20, 1371–1375.Google Scholar
  109. 109.
    Birch-Hirschfeld, E., Egerer, R., Striebel, H. M., and Stelzner, A. (2002) New ways to immobilize oligonucleotides on DNA-Chips. Collect. Czech. Chem. Commun., Symp. Ser. 5, 299–303.Google Scholar
  110. 110.
    Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.Google Scholar
  111. 111.
    Eisen, M. B. and Brown, P. O. (1999) DNA arrays for analysis of gene expression. Methods Enzymol. 303, 179–205.Google Scholar
  112. 112.
    Dolan, P. L., Wu, Y., Ista, L. K., Metzenberg, R. L., Nelson, M. A., and Lopez, G. P. (2001) Robust and efficient synthetic method for forming DNA microarrays. Nucleic Acids Res. 29, E107.Google Scholar
  113. 113.
    Prokein, T. (2004) Dithiolanderivate zur Immobilisierung von Nukleinsäuren an Goldoberflächen, Thesis, Univ. Ulm, Germany.Google Scholar
  114. 114.
    Beier, M. and Hoheisel, J. D. (2002) Analysis of DNA-microarrays produced by inverse in situ oligonucleotide synthesis. J. Biotechnol. 94, 15–22.Google Scholar
  115. 115.
    Albert, T. J., Norton, J., Ott, M., et al. (2003) Light-directed 5′→3′ synthesis of complex oligonucleotide microarrays. Nucleic Acids Res. 31, E35.Google Scholar
  116. 116.
    Wang, H.-Y., Malek, R. L., Kwitek, A. E., et al. (2003) Assessing unmodified 70mer oligonucleotide probe performance on glass-slide microarrays. Genome Biol. 4, R5/1–R5/6.Google Scholar
  117. 117.
    Kane, M. D., Jatkoe, T. A., Stumpf, C. R., Lu, J., Thomas, J. D., and Madore, S. J. (2000) Assessment of the sensitivity and specificity of oligonucleotide (50 mer) microarrays. Nucleic Acids Res. 28, 4552–4557.Google Scholar
  118. 118.
    Lemeshko, S. V., Powdrill, T., Belosludtsev, Y. Y., and Hogan, M. (2001) Oligonucleotides form a duplex with non-helical properties on a positively charged surface. Nucleic Acids Res. 29, 3051–3058.Google Scholar
  119. 119.
    Földes-Papp, Z., Baumann, G., Birch-Hirschfeld, E., et al. (1998) Quantitative analysis of oligonucleotide preparations by fractal measures. Biopolymers 45, 361–379.Google Scholar
  120. 120.
    Jobs, M., Fredriksson, S., Brookes, A. J., and Landegren, U. (2002) Effect of oligonucleotide truncation on single-nucleotide distinction by solid-phase hybridization. Anal. Chem. 74, 199–202.Google Scholar
  121. 121.
    Stillman, B. A. and Tonkinson, J. L. (2001) Expression microarray hybridization kinetics depends on length of the immobilized DNA but are independent of immobilization substrate. Anal. Biochem. 295, 149–157.Google Scholar
  122. 122.
    Belosludtsev, Y., Belosludtsev, I., Iverson, B., et al. (2001) Nearly instantaneous, cation-independent, high selectivity nucleic acid hybridization to DNA microarrays. Biochem. Biophys. Res. Comm. 282, 1263–1267.Google Scholar
  123. 123.
    Peterson, A. W., Heaton, R. J., and Georgiadis, R. M. (2001) The effect of surface probe on DNA hybridization. Nucleic Acids Res. 29, 5763–5768.Google Scholar
  124. 124.
    Vainrub, A. and Pettitt, B. M. (2002) Coulomb blockage of hybridization in two-dimensional DNA arrays. Phys. Rev. 66, 041905/1–041905/4.Google Scholar
  125. 125.
    Dixon, A. E. and Damaskinos, S. (2001) Confocal scanning of genetic microarrays. Meth. Mol. Biol. 170, 237–246.Google Scholar
  126. 126.
    Epstein, J. R., Biran, I., and Walt, D. R. (2002) Fluorescence-based nucleic acid detection and microarrays. Anal. Chim. Acta 469, 3–36.Google Scholar
  127. 127.
    Frutos, A. G., Pal, S., Quesada, M., and Lahiri, J. (2002) Method for detection of single-base mismatches using bimolecular beacons. J. Am. Chem. Soc. 124, 2396–2397.Google Scholar
  128. 128.
    Csáki, A., Maubach, G., Born, D., Reichert, J., and Fritzsche, W. (2002) DNAbased molecular nanotechnology. Single Mol. 3, 275–280.Google Scholar
  129. 129.
    Taton, T. A., Mirkin, C. A., and Letsinger, R. L. (2000) Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760.Google Scholar
  130. 130.
    Shchepinov, M. S., Udalova, I. A., Bridgman, A. J., and Southern, E. M. (1997) Oligonucleotide dendrimers: synthesis and use as polylabelled DNA probes. Nucleic Acids Res. 25, 4447–4454.Google Scholar
  131. 131.
    Stears, R. L., Getts, R. C., and Gullans, S. R. (2000) A novel, sensitive detection system for high-density microarrays using dendrimer technology. Physiol. Gen. 3, 93–99.Google Scholar
  132. 132.
    Marti, G. E., Gaigalas, A., and Vogt, R. F. (2000) Recent developments in quantitative fluorescence calibration for analyzing cells and microarrays. Cytometry 42, 263.Google Scholar
  133. 133.
    Cheung, V., Morley, M., Aguilar, F., Massini, A., Kucherlapati, R., and Childs, G. (1999) Making and reading microarrays. Nat. Genet. 21, 15–19.Google Scholar
  134. 134.
    Mac Beath, G. and Schreiber, S. L. (2000) Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1762.Google Scholar
  135. 135.
    Salin, H., Vujasinovic, T., Mazurie, A., et al. (2002) A novel sensitive microarray approach for differential screening using probes labeled with two different radioelements. Nucleic Acids Res. 30, E17.Google Scholar
  136. 136.
    Battaglia, C., Salani, G., Consolandi, C., Bernardi, L. R., and De Bellis, G. (2000) Analysis of DNA microarrays by non-destructive fluorescent staining using SYBR green II. BioTechniques 29, 78–81.Google Scholar
  137. 137.
    Nelson, B. P., Grimsrud, T. E., Liles, M. R., Goodman, R. M., and Corn, R. M. (2001) Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal. Chem. 73, 1–7.Google Scholar
  138. 138.
    Stomakhin, A. A., Vasiliskov, V. A., Timofeev, E., Schulga, D., Cotter, R. J., and Mirzabekov, A. D. (2000) DNA sequence analysis by hybridization with oligonucleotide microchips: MALDI mass spectrometry identification of 5 mers contiguously stacked to microchip oligonucleotides Nucleic Acids Res. 28, 1193–1198.Google Scholar
  139. 139.
    Edman, C. F., Raymond, D. E., Wu, D. J., et al. (1997) Electric field directed nucleic acid hybridization on microchips. Nucleic Acids Res. 25, 4907–4914.Google Scholar
  140. 140.
    Thewes, R., Hofmann, F., Frey, B., et al. (2002) Sensor arrays for fully-electronic DNA detection on CMOS, in Proceedings of International Solid-State Circuits Conference (ISSCC), IEEE International 2002, pp. 350–351.Google Scholar
  141. 141.
    Drummond, T. G., Hill, M. G., and Barton, J. K. (2003) Electrochemical DNA sensors. Nat. Biotechnol. 21, 1192–1193.Google Scholar
  142. 142.
    Lassalle, N., Roget, A., Livache, T., Mailley, P., and Vieil, E. (2001) Electropolymerisable pyrrole-oligonucleotide: synthesis and analysis of ODN by fluorescence and QCM. Talanta 55, 993–1004.Google Scholar
  143. 143.
    Marquette, C. A., Lawrence, I., Polychronakos, C., and Lawrence, M. F. (2002) Impedance based DNA chip for direct Tm measurement. Talanta 56, 763–768.Google Scholar
  144. 144.
    Kerman, K., Kobayashi, M., and Tamiya, E. (2004) Recent trends in electrochemical DNA biosensor technology. Meas. Sci. Technol. 15, R1–R11.Google Scholar
  145. 145.
    Sterrenburg, E., Turk, R., Boer, J. M., van Ommen, G. B., and den Dunnen, J. T. (2002) A common reference for cDNA microarray hybridizations. Nucleic Acids Res. 30, E116.Google Scholar
  146. 146.
    Hu, L., Cogdell, D., Jia, Y., Hamilton, S. R., and Zhang, W. (2002) Monitoring of microarray production with a common oligonucleotide and specificity with selected targets. BioTechniques 32, 528–534.Google Scholar
  147. 147.
    Tahi, F., Achddou, B., Decraene, C., et al. (2002) Automatic quantitation of hybridization signals on cDNA arrays. BioTechniques 32, 1386–1397.Google Scholar
  148. 148.
    Chuaqui, R. F., Bonner, R. F., Best, C. J., et al. (2002) Post-analysis follow-up and validation of microarray experiments. Nat. Genet. 32, 509–514.Google Scholar
  149. 149.
    Wang, Y., Wang, X., Guo, S. W., and Ghosh, S. (2002) Conditions to ensure competitive hybridization in two-color microarray: the theoretical and experimental analysis. BioTechniques 32, 1342–1346.Google Scholar
  150. 150.
    Sinibaldi, R., O’Connell, C., Seidel, C., and Rodriguez, H. (2001) Gene expression analysis on medium-density oligonucleotide arrays. Meth. Mol. Biol. 170, 211–222.Google Scholar
  151. 151.
    Heller, M. J. (2002) DNA microarray technology: devices, systems, and applications. Annu. Rev. Biomed. Eng. 4, 129–153.Google Scholar
  152. 152.
    Khan, J., Bittner, M. L., Chen, Y., Meltzer, P. S., and Trent, J. M. (1999) DNA microarray technology: the anticipated impact on the study of human disease. Biochim. Biophys. Acta 1423, M17–M28.Google Scholar
  153. 153.
    Fathman, C. G., Soares, L., Chan, S. M., and Utz, P. J. (2005) An array of possibilities for the study of autoimmunity. Nature 435, 605–611.Google Scholar
  154. 154.
    Boothroyd, J. C., Blader, I., Cleary, M., and Singh, U. (2003) DNA microarrays in parasitology: strengths and limitations. Trends Parasitol. 19, 470–476.Google Scholar
  155. 155.
    Shioda, T. (2004) Application of DNA microarray to toxicological research. J. Environ. Pathol. Toxicol. Oncol. 23, 13–31.Google Scholar
  156. 156.
    Koizumi, S. (2004) Application of DNA microarrays in occupational health research. J. Occup. Health 46, 20–25.Google Scholar
  157. 157.
    Pattnaik, P. and Jana, A. M. (2005) Microbial forensics: application in bioterrorism. Environ. Forensics 6, 197–204.Google Scholar
  158. 158.
    Draghici, S., Chen, D., and Reifman, J. (2004) Applications and challenges of DNA microarray technology in military medical research. Mil. Med. 169, 654–659.Google Scholar
  159. 159.
    Marx, J. (2000) DNA microarrays reveal cancer in its many forms. Science 289, 1670–1672.Google Scholar
  160. 160.
    Mocellin, S., Provenzano, M., Rossi, C. R., Pilati, P., Nitti, D., and Lise, M. (2005) DNA array-based gene profiling: from surgical specimen to the molecular portrait of cancer. Ann. Surg. 241, 16–26.Google Scholar
  161. 161.
    Mocellin, S., Wang, E., Panelli, M., Pilati, P., and Marincola, F. M. (2004) DNA array-based gene profiling in tumor immunology. Clin. Cancer Res. 10, 4597–4606.Google Scholar
  162. 162.
    Wadlow, R. and Ramaswamy, S. (2005) DNA microarrays in clinical cancer research. Curr. Mol. Med. 5, 111–120.Google Scholar
  163. 163.
    Nambiar, S., Mirmohammadsadegh, A., Bär, A., Bardenheuer, W., Roeder, G., and Hengge, U. R. (2004) Applications of array technology: melanoma research and diagnosis. Summary Expert Rev. Mol. Diagn. 4, 549–557.Google Scholar
  164. 164.
    Ooslander, A. E., Meijer, G. A., and Ylstra, B. (2004) Microarray-based comparative genomic hybridization and its application in human genetics. Clin. Genet. 66, 488–495.Google Scholar
  165. 165.
    Tejedor, D., Castillo, S., Mozas, P., et al. (2005) Reliable low-density DNA array based on allele-specific probes for detection of 118 mutations causing familial hypercholesterolemia. Clin. Chem. 51, 1137–1144.Google Scholar
  166. 166.
    Snijders, A. M., Pinkel, D., and Albertson, D. G. (2003) Current status and future prospects of array-based comparative genomics by hybridisation. Briefings Funct. Genomics Proteomics 2, 37–45.Google Scholar
  167. 167.
    Mann, M. (1999) Quantitative proteomics? Nat. Biotechnol. 17, 954–955.Google Scholar
  168. 168.
    Kodadek, T. (2001) Protein microarrays: prospects and problems. Chem. Biol. 8, 105–115.Google Scholar
  169. 169.
    Stoll, D., Templin, M. F., Schrenk, M., Traub, P. C., Vöhringer, C. F., and Joos, T. O. (2002) Protein microarray technology. Front. Biosci. 7, C13–C32.Google Scholar
  170. 170.
    Haab, B. B., Dunham, M. J., and Brown, P. O. (2001) Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2, research 0004.1-0004.12.Google Scholar
  171. 171.
    Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999.Google Scholar
  172. 172.
    Frank, R. (1992) Spot-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48, 9217–9232.Google Scholar
  173. 173.
    MacBeath, G. and Schreiber, S. L. (2000) Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763.Google Scholar
  174. 174.
    Moerman, R., Frank, J., Marijnissen, J. C. M., Schalkhammer, T. G. M., and van Dedem, G. W. K. (2001) Miniaturized electrospraying as a technique for the production of microarrays of reproducible micrometer-sized protein spots. Anal. Chem. 73, 2183–2189.Google Scholar
  175. 175.
    Ouyang, Z., Takats, Z., Blake, T. A., et al. (2003) Preparing protein microarrays by soft-landing of mass-selected ions. Science 301, 1351–1354.Google Scholar
  176. 176.
    Paweletz, C. P., Charbonneau, L., Bichsel, V. E., et al. (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20, 1981–1989.Google Scholar
  177. 177.
    Shin, I., Park, S., and Lee, M. R. (2005) Carbohydrate microarrays: an advanced technology for functional studies of glycans. Chem. Eur. J. 11, 2894–2901.Google Scholar
  178. 178.
    Wang, D. (2003) Carbohydrate microarrays. Proteomics 3, 2167–2175.Google Scholar
  179. 179.
    Zähringer, H. (2005) Glykomik: Vom lästigen Anhängsel zum Molekül-Star. Labor J. 18–21.Google Scholar
  180. 180.
    Werz, D. B. and Seeberger, P. H. (2005) Carbohydrates as the next frontier in pharmaceutical research. Chem. Eur. J. 11, 3194–3206.Google Scholar
  181. 181.
    Plante, O. J., Palmacci, E. R., and Seeberger, P. H. (2001) Automated solid-phase synthesis of oligosaccharides. Science 291, 1523–1527.Google Scholar
  182. 182.
    Love, K. H. and Seeberger, P. H. (2002) Carbohydrate arrays as tools for glycomics. Angew. Chem. Int. Ed. Engl. 41, 3583–3586.Google Scholar
  183. 183.
    Chen, X., Liu, Z.-Y., Zhang, J. B., Zheng, W., Kowal, P., and Wang, P. G. (2002) Reassembled biosynthetic pathway for large-scale carbohydrate synthesis: á-gal epitope producing “superbug”. Chembiochem, 3, 47–5Google Scholar
  184. 184.
    Ratner, D. M., Adams, E. W., Disney, M. D., and Seeberger, P. H. (2004) Tools for glycomics: mapping interactions of carbohydrates in biological systems. Chembiochem 5, 1375–1383.Google Scholar
  185. 185.
    Khraltsova, L. S., Sablina, M. A., Melikhova, T. D., et al. (2000) An enzyme-linked lectin assay for alpha1, 3-galactosyltransferase. Anal. Biochem. 280, 250–257.Google Scholar
  186. 186.
    Park, S., Lee, M., Pyo, S., and Shin, I. (2004) Carbohydrate chips for studying high-throughput carbohydrate-protein interactions. J. Am. Chem. Soc. 126, 4812–4819.Google Scholar
  187. 187.
    Wang, P., Liu, S., Trummer, B. J., Deng, C., and Wang, A. (2002) Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nat. Biotechnol. 20, 275–281.Google Scholar
  188. 188.
    Willats, W. G., Rasmussen, S. E., Kristensen, T., Mikkelsen, J. D., and Knox, J. P. (2002) Sugar-coated microarrays; a novel slide surface for the high-throughput analysis of glycans. Proteomics 2, 1666–1671.Google Scholar
  189. 189.
    Lundquist, J. J. and Toone, E. (2002) The cluster glycoside effect. Chem. Rev. 102, 555–578.Google Scholar
  190. 190.
    Ratner, D. M., Adams, E. W., Su, J., O’Keefe, B. R., Mrksich, M., and Seeberger, P. H. (2004) Probing protein-carbohydrate interactions with microarrays of synthetic oligosaccharides. Chembiochem 5, 379–383.Google Scholar
  191. 191.
    Schwarz, M., Spector, L., Gargir, A., et al. (2003) A new kind of carbohydrate array, its use for the profiling of antiglycan antibodies, and the discovery of a novel human cellulose-binding antibody. Glycobiology 13, 749–754.Google Scholar
  192. 192.
    Fazio, F., Bryan, M. C., Blixt, U., Paulson, J. C., and Wong, C. H. (2002) Synthesis of sugar arrays in microtiter plate. J. Am. Chem. Soc. 124, 14,397–14,402.Google Scholar
  193. 193.
    Houseman, B. T. and Mrksich, M. (2002) Carbohydrate arrays for the evaluation of protein-binding and enzymatic modification. Chem. Biol. 4, 443–454.Google Scholar
  194. 194.
    Köhn, M., Wacker, R., Peters, C., et al. (2003) Staudinger ligation: a new immobilization strategy for the preparation of small-molecule arrays. Angew. Chem. Int. Ed. Engl. 42, 5829–5834.Google Scholar
  195. 195.
    Park, S. and Shin, I. (2002) Fabrication of carbohydrate chips for studying protein-carbohydrate interactions. Angew. Chem. Int. Ed. Engl. 41, 3180–3182.Google Scholar
  196. 196.
    Fukui, S., Feizi, T., Galustian, C., Lawson, A. M., and Chai, W. (2002) Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interaction. Nat. Biotechnol. 20, 1011–1017.Google Scholar
  197. 197.
    Feizi, T., Fazio, F., Chai, W., and Wong, C. H. (2003) Carbohydrate microarrays—a new set of technologies at the frontiers of glycomics. Curr. Opin. Struct. Biol. 13, 637–645.Google Scholar
  198. 198.
    Shin, I., Cho, J. W., and Boo, D. W. (2004) Carbohydrate arrays for functional studies of carbohydrates. Combin. Chem. and High Throughput Screen. 7, 565–574.Google Scholar
  199. 199.
    Adams, E. W., Ratner, D. M., Bokesch, H. R., McMahon, J. B., O’Keefe, B. R., and Seeberger, P. H. (2004) Oligosaccharide and glycoprotein microarrays as tools in HIV glycobiology: glycan-dependent gp120/protein interactions. Chem. Biol. 11, 739–740.Google Scholar
  200. 200.
    Fourmy, D., Recht, M. I., Blanchard, S. C., and Puglisi, J. D. (1996) Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science 274, 1367–1371.Google Scholar
  201. 201.
    Griffey, R. H., Hofstadler, S. A., Sannes-Lowery, K. A., Ecker, D. J., and Crooke, S. T. (1999) Determinants of aminoglycoside-binding specificity for rRNA by using mass spectrometry. Proc. Natl. Acad. Sci. USA 96, 10,129–10,133.Google Scholar
  202. 202.
    Magnet, S., Lambert, T., Courvalin, P., and Blanchard, J. S. (2001) Kinetic and mutagenic characterization of the chromosomally encoded Salmonella enterica AAC(6′)-Iy aminoglycoside-N-acetyltransferase. Biochemistry 40, 3700–3709.Google Scholar
  203. 203.
    Hedge, S. S., Javid-Majd, F., and Blanchard, J. S. (2001) Overexpression and mechanistic analysis of chromosomally encoded aminoglycoside 2′-N-acetyltransferase (AAC(2′)-Ie) from Mycobacterium tuberculosis. J. Biol. Chem. 276, 45,876–45,881.Google Scholar
  204. 204.
    Disney, M. D. and Seeberger, P. H. (2004) The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens. Chem. Biol. 11, 1701–1707.Google Scholar
  205. 205.
    Mellet, C. O. and Fernández, J. M. G. (2002) Carbohydrate microarrays. Chembiochem. 3, 819–822.Google Scholar
  206. 206.
    Horan, N., Yan, L., Isobe, H., Whitesides, G. M., and Kahne, D. (1999) Nonstatistical binding of a protein to clustered carbohydrates. Proc. Natl. Acad. Sci. USA 96, 11,782–11,786.Google Scholar
  207. 207.
    Dupnik, K. (2004) Support materials for cell arrays. Thesis, Univ. Ulm. Germany.Google Scholar
  208. 208.
    Xu, C. W. (2002) High-density cell microarrays for parallel functional determinations. Genome Res. 12, 482–486.Google Scholar
  209. 209.
    Yamamura, S., Kishi, H., Tokimitsu, Y., et al. (2005) Single-cell microarray for analyzing cellular response. Anal. Chem., ASAP Article, A-G.Google Scholar
  210. 210.
    Schwenk, J. M., Stoll, D., Templin, M. F., and Joos, T. O. (2002) Cell microarrays: an emerging technology for the characterization of antibodies, Biotechniques 33, S54–S61.Google Scholar
  211. 211.
    Choi, J. W., Park, K. W., Lee, D. B., Lee, W., and Lee, W. H. (2005) Cell immobilization using self-assembled synthetic oligopeptide and its application to biological toxicity detection using surface plasmon resonance. Biosens. Bioelectron. 20, 2300–2305.Google Scholar
  212. 212.
    Wheeler, D. B., Bailey, S. N., Guertin, D. A., Carpenter, A. E., Higgins, C. O., and Sabatini, D. M. (2004) RNAi living-cell microarrays for loss-of-function screens in Drosophila melanogaster cells. Nat. Methods 1, 127–132.Google Scholar
  213. 213.
    Ziauddin, J. and Sabatini, D. M. (2002) Microarrays of cells expressing defined cDNA’s. Nature 411, 107–110.Google Scholar
  214. 214.
    Wu, R. Z., Bailey, S. N., and Sabatini, D. M. (2002) Cell-biological applications of transfected cell microarrays. Trends Cell. Biol. 12, 485–488.Google Scholar
  215. 215.
    Blagoev, B. and Pandey, A. (2001) Microarrays go live—new prospects for proteomics. Trends Biochem. Sci. 26, 639–641.Google Scholar
  216. 216.
    Bailey, S. N., Wu, R. Z., and Sabatini, D. M. (2002) Applications of transfected cell microarrays in drug discovery. Drug Discov. Today, High-throughput Technol. Suppl. S113–S118.Google Scholar
  217. 217.
    Delehanty, J. B., Shaffer, K. M., and Lin, B. (2004) Transfected cell microarrays for the expression of membrane-displayed single-chain antibodies. Anal. Chem. 76, 7323–7328.Google Scholar
  218. 218.
    Baghdoyan, S., Roupioz, Y., Pitaval, A., et al. (2004) Quantitative analysis of highly parallel transfection in cell microarrays. Nucleic Acids Res. 32, e77.Google Scholar
  219. 219.
    Packeisen, J., Korsching, H., Herbst, H., Böcker, W., and Bürger, H. (2003) Demystified tissue microarray technology. J. Clin. Pathol./Mol. Pathol. 56, 198–204.Google Scholar
  220. 220.
    Braunschweig, T., Chung, J. Y., and Hewitt, S. M. (2004) Perspectives in tissue microarrays. Comb. Chem. High Throughput Screen. 7, 575–585.Google Scholar
  221. 221.
    Shergill, I. S., Shergill, N. K., Arya, M., and Patel, H. R. H. (2004) Tissue microarrays: a current medical research tool. Curr. Med. Res. Opin. 20, 707–712.Google Scholar
  222. 222.
    Jacquemier, J., Ginestier, C., Charafe-Jauffret, E., et al. (2003) Small but high throughput: how “tissue-microarrays” became a favorite tool for pathologists and scientists. Ann. Pathol. 23, 623–632Google Scholar
  223. 223.
    Watanabe, A., Cornelison, R., and Hostetter, G. (2005) Tissue microarrays: application in genomic research. Expert Rev. Molec. Diagn. 5, 171–181.Google Scholar
  224. 224.
    Rao, J. S. and Bond, M. (2001) Microarrays: managing the data deluge. Circ. Res. 88, 1226–1227.Google Scholar
  225. 225.
    Zhou, Y. and Abagyan, R. (2003) Algorithmus for high-density oligonucleotide array. Curr. Opin. Drug Discov. Dev. 6, 339–345.Google Scholar
  226. 226.
    Suyama, A., Nishida, N., Kurata, K., and Omagari, K. (2000) Gene expression analysis by DNA computing, in Computational Molecular Biology, (Miyano, S., Shamir, R. and Takagi, T., eds.), Universal Academy Press, Tokyo, pp. 12–13.Google Scholar
  227. 227.
    Nishida, N., Wakui, M., Tokunaga, K., and Suyama, A. (2001) Highly specific and quantitative gene expression profiling based on DNA computing. Genome Inf. Series 12, 259–260.Google Scholar
  228. 228.
    Sakakibara, Y. and Suyama, A. (2000) Intelligent DNA chips: logical operation of gene expression profiles on DNA computers, Genome Inf. 11, 33–42.Google Scholar
  229. 229.
    Baldi, P. and Long, A. D. (2001) A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17, 509–519.Google Scholar
  230. 230.
    Mills, J. C. and Gordon, J. I. (2001) A new approach for filtering noise from highdensity oligonucleotide microarrays datasets. Nucleic Acids Res. 29, E72.Google Scholar
  231. 231.
    Yang, I. V., Chen, E., Hasseman, J. P., et al. (2002) Within the fold: assessing differential expression measures and reproducibility in microarray assays. Genome Biol. 3, research 0062.10062.12.Google Scholar
  232. 232.
    Relógio, A., Schwager, C., Richter, A., Ansorge, W., and Valcárcel, J. (2002) Optimization of oligonucleotide-based DNA microarrays. Nucleic Acids Res. 30, E51.Google Scholar
  233. 233.
    Chittur, S. V. (2004) DNA microarrays: tools for the 21st century. Combin. Chem. High Throughput Screen. 7, 531–537.Google Scholar
  234. 234.
    Gerhold, D., Rushmore, T., and Caskey, C. T. (1999) DNA chips: promising toys have become powerful tools. Trends Biochem. Sci. 24, 168–173.Google Scholar
  235. 235.
    Paul, H. (2001) Qualitätskriterien bei der Herstellung von DNA-Mikroarrays. Transcript Laborwelt 3, 12–16.Google Scholar
  236. 236.
    Simon, R., Radmacher, M. D., Dobbin, K., and McShane, L. M. (2003) Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J. Natl. Cancer Inst. 95, 14–18.Google Scholar
  237. 237.
    Ziebolz, B. (2005) Genom-sequenzierung—schnell und kostengünstig. Bio. Tech. 9–10, 32–35.Google Scholar
  238. 238.
    Mills, J. C., Roth, K. A., Cagan, R. L., and Gordon, J. I. (2001) DNA microarrays and beyond: completing the journey from tissue to cell. Nat. Cell Biol. 3, E175–E178.Google Scholar
  239. 239.
    Panda, S., Sato, T. K., Hampton, G. M., and Hogenesch, J. B. (2003) An array of insights: application of DNA chip technology in the study of cell biology. Trends Cell Biol. 13, 151–156.Google Scholar
  240. 240.
    Ng, J. H. and Ilag, L. L. (2003) Biochips beyond DNA: technologies and applications. Biotechnol. Annu. Rev. 9, 1–149.Google Scholar
  241. 241.
    Moch, H., Kononen, T., Kallionemi, O. P., and Sauter, G. (2001) Tissue microarrays: what will they bring to molecular and anatomic pathology? Adv. Anat. Pathol. 8, 14–20.Google Scholar
  242. 242.
    Forthcoming (2007) The Second World Congress on Gender-Specific Medicine and Aging: The Endocrine Impact, Rome.Google Scholar
  243. 243.
    Neumaier, M. and Funke, H. (2005) Ethik und Qualitätsmanagement genetischer Untersuchungen. Klinikarzt 34, 66–70.Google Scholar
  244. 244.
    Gershon, D. (2005) More than gene expression. Nature 437, 1195–1200.Google Scholar
  245. 245.
    Bowtell, D. D. L. (1999) Options available from start to finish—for obtaining expression data by microarray. Nat. Genet. Suppl. 21, 25–32.Google Scholar
  246. 246.
    Gwynne, P. and Page, G. (1999) Microarray analysis: the next revolution in molecular biology. Science 288, 911, 914, 918, 922, 926, 932, 938.Google Scholar
  247. 247.
    Marktübersicht Microarray-Reader (2002). Transcript Laborwelt III/2002, Verlag der Biocom A. G., Berlin 32–34.Google Scholar
  248. 248.
    Wheeler, D. L., Chappey, C., Lash, A. E., et al. (2000) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 28, 10–14.Google Scholar
  249. 249.
    Vente, A., Korn, B., Zehetner, G., Poustka, A., and Lehrach, H. (1999) Distribution and early development of microarray technology in Europe. Nat. Genet. 22, 22.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Hartmut Seliger
    • 1
  1. 1.Arbeitsgruppe Chemische Funktionen in BiosystemenUniversitat UlmUlmGermany

Personalised recommendations