Skip to main content

Microwave-Assisted Processing and Embedding for Transmission Electron Microscopy

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 369))

Abstract

Microwave processors can provide a means of rapid processing and resin embedding for biological specimens that are to be sectioned and examined by transmission electron microscopy. This chapter describes a microwave-assisted protocol for processing, dehydrating, and embedding biological material, from living specimens to blocks embedded in sectionable resin in 4 h or less.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Marani, E., Boon, M. E., Adriolo, P. J., Rietveld, W. J., and Kok, L. P. (1987) Microwave-cryostat technique for neuroanatomical studies. J. Neurosci. Meth. 22, 97–101.

    Article  CAS  Google Scholar 

  2. Ruijter, E. T., Miller, G. J., Aalders, T. W., et al. (1997) Rapid microwave-stimulated fixation of entire prostatectomy specimens. Biomed-II MPC Study Group. J. Pathol. 183, 369–375.

    Article  CAS  PubMed  Google Scholar 

  3. Laboux, O., Dion, N., Arana-Chavez, V., Ste-Marie, L. G., and Nanci, A. (2004) Microwave irradiation of ethanol-fixed bone improves preservation, reduces processing time, and allows both light and electron microscopy on the same sample. J. Histochem. Cytochem. 52, 1267–1275.

    Article  CAS  PubMed  Google Scholar 

  4. Boon, M. E., Wals-Paap, C. H., Visinoni, F. A., and Kok, L. P. (1995) The two-step vacuum-microwave method for histoprocessing. Eur. J. Morphol. 33, 349–358.

    CAS  PubMed  Google Scholar 

  5. Kok, L. P. and Boon, M. E. (1995) Ultrarapid vacuum-microwave histoprocessing. Histochem. J. 27, 411–419.

    CAS  PubMed  Google Scholar 

  6. Kanai, K., Nunoya, T., Shibuya, K., Nakamura, T., and Tajima, M. (1998) Variations in effectiveness of antigen retrieval pretreatments for diagnostic immunohistochemistry. Res. Vet. Sci. 64, 57–61.

    Article  CAS  PubMed  Google Scholar 

  7. Kahveci, Z., Minbay, F. Z., Noyan, S., and Cavusoglu, I. (2003) A comparison of microwave heating and proteolytic pretreatment antigen retrieval techniques in formalin fixed, paraffin embedded tissues. Biotech. Histochem. 78, 119–128.

    Article  CAS  PubMed  Google Scholar 

  8. Shi, S. R., Key, M. E., and Kalra, K. L. (1991) Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections. J. Histochem. Cytochem. 39, 741–748.

    CAS  PubMed  Google Scholar 

  9. Kahveci, Z., Minbay, F. Z., and Cavusoglu, L. (2000) Safranin O staining using a microwave oven. Biotech. Histochem. 75, 264–268.

    Article  CAS  PubMed  Google Scholar 

  10. Minbay, F. Z., Kahveci, Z., and Cavusoglu, I. (2001) Rapid Bielschowsky silver impregnation method using microwave heating. Biotech. Histochem. 76, 233–237.

    CAS  PubMed  Google Scholar 

  11. Marani, E., Guldemond, J. M., Adriolo, P. J., Boon, M. E., and Kok, L. P. (1987) The microwave Rio-Hortega technique: a 24 hour method. Histochem. J. 19, 658–664.

    Article  CAS  PubMed  Google Scholar 

  12. Munoz, T. E., Giberson, R. T., Demaree, R., and Day, J. R. (2004) Microwave-assisted immunostaining: a new approach yields fast and consistent results. J. Neurosci. Meth. 137, 133–139.

    Article  CAS  Google Scholar 

  13. Tinling, S. P., Giberson, R. T., and Kullar, R. S. (2004) Microwave exposure increases bone demineralization rate independent of temperature. J. Microsc. (Oxford) 215, 230–235.

    Article  CAS  Google Scholar 

  14. Cunningham, C. D., 3rd, Schulte, B. A., Bianchi, L. M., Weber, P. C., and Schmiedt, B. N. (2001) Microwave decalcification of human temporal bones. Laryngoscope 111, 278–282.

    Article  PubMed  Google Scholar 

  15. Boon, M. E. and Kok, L. P. (1994) Microwaves for immunohistochemistry. Micron 25, 151–170.

    Article  CAS  PubMed  Google Scholar 

  16. Boon, M. E., Hendrikse, F. C., Kok, P. G., Bolhuis, P., and Kok, L. P. (1990) A practical approach to routine immunostaining of paraffin sections in the microwave oven. Histochem. J. 22, 347–352.

    Article  CAS  PubMed  Google Scholar 

  17. Suurmeijer, A. J., Boon, M. E., and Kok, L. P. (1990) Notes on the application of microwaves in histopathology. Histochem. J. 22, 341–346.

    Article  CAS  PubMed  Google Scholar 

  18. Jackson, P., Lalani, E. N., and Boutsen, J. (1988) Microwave-stimulated immunogold silver staining. Histochem. J. 20, 353–358.

    Article  CAS  PubMed  Google Scholar 

  19. Mabruk, M. J., Flint, S. R., Coleman, D. C., Shiels, O., Toner, M., and Atkins, G. J. (1996) A rapid microwave-in situ hybridization method for the definitive diagnosis of oral hairy leukoplakia: comparison with immunohistochemistry. J. Oral. Pathol. Med. 25, 170–176.

    Article  CAS  PubMed  Google Scholar 

  20. Van den Brink, W. J., Zijlmans, H. J., Kok, L. P., et al. (1990) Microwave irradiation in label-detection for diagnostic DNA-in situ hybridization. Histochem. J. 22, 327–334.

    Article  PubMed  Google Scholar 

  21. Hellstrom, S. and Nilsson, M. (1992) The microwave oven in temporal bone research. Acta Otolaryngol. Suppl. 493, 15–18.

    CAS  PubMed  Google Scholar 

  22. Madden, V. J. and Henson, M. M. (1997) Rapid decalcification of temporal bones with preservation of ultrastructure. Hear. Res. 111, 76–84.

    Article  CAS  PubMed  Google Scholar 

  23. Keithley, E. M., Truong, T., Chandronait, B., and Billings, P. B. (2000) Immunohistochemistry and microwave decalcification of human temporal bones. Hear. Res. 148, 192–196.

    Article  CAS  PubMed  Google Scholar 

  24. Cavusoglu, I., Minbay, F. Z., Temel, S. G., and Noyan, S. (2001) Rapid polymerisation with microwave irradiation for transmission electron microscopy. Eur. J. Morphol. 39, 313–317.

    Article  CAS  PubMed  Google Scholar 

  25. Arana-Chavez, V. E. and Nanci, A. (2001) High-resolution immunocytochemistry of noncollagenous matrix proteins in rat mandibles processed with microwave irradiation. J. Histochem. Cytochem. 49, 1099–1109.

    CAS  PubMed  Google Scholar 

  26. Giberson, R. T. and Demaree, R. S., Jr. (1995) Microwave fixation: understanding the variables to achieve rapid reproducible results. Microsc. Res. Tech. 32, 246–254.

    Article  CAS  PubMed  Google Scholar 

  27. Giberson, R. T., Demaree, R. S., Jr., and Nordhausen, R. W. (1997) Four-hour processing of clinical/diagnostic specimens for electron microscopy using microwave technique. J. Vet. Diagn. Invest. 9, 61–67.

    CAS  PubMed  Google Scholar 

  28. Giberson, R. T. and Demaree, R. S., Jr. (1999) Microwave processing techniques for electron microscopy: a four-hour protocol. Methods Mol. Biol. 117, 145–158.

    CAS  PubMed  Google Scholar 

  29. Giberson, R. T., Austin, R. L., Charlesworth, J., Adamson, G., and Herrera, G. A. (2003) Microwave and digital imaging technology reduce turnaround times for diagnostic electron microscopy. Ultrastruct. Pathol. 27, 187–196.

    Article  PubMed  Google Scholar 

  30. McLay, A. L., Anderson, J. D., and McMeekin, W. (1987) Microwave polymerisation of epoxy resin: rapid processing technique in ultrastructural pathology. J. Clin. Pathol. 40, 350–352.

    Article  CAS  PubMed  Google Scholar 

  31. Wendt, K. D., Jensen, C. A., Tindall, R., and Katz, M. L. (2004) Comparison of conventional and microwave-assisted processing of mouse retinas for transmission electron microscopy. J. Microsc. (Oxford) 214, 80–88.

    Article  CAS  Google Scholar 

  32. Wouterlood, F. G., Boon, M. E., and Kok, L. P. (1990) Immunocytochemistry on free-floating sections of rat brain using microwave irradiation during the incubation in the primary antiserum: light and electron microscopy. J. Neurosci. Meth. 35, 133–145.

    Article  CAS  Google Scholar 

  33. Kok, L. P. and Boon, M. E. (1990) Microwaves for microscopy. J. Microsc. (Oxford) 158, 291–322.

    CAS  Google Scholar 

  34. Chicoine, L. and Webster, P. (1998) Effect of microwave irradiation on antibody labeling efficiency when applied to ultrathin cryosections through fixed biological material. Microsc. Res. Tech. 42, 24–32.

    Article  CAS  PubMed  Google Scholar 

  35. Rangell, L. K. and Keller, G. A. (2000) Application of microwave technology to the processing and immunolabeling of plastic-embedded and cryosections. J. Histochem. Cytochem. 48, 1153–1159.

    CAS  PubMed  Google Scholar 

  36. Keller, G. A., Tokuyasu, K. T., Dutton, A. H., and Singer, S. J. (1984) An improved procedure for immunoelectron microscopy: ultrathin plastic embedding of immunolabeled ultrathin frozen sections. Proc. Natl. Acad. Sci. USA 81, 5744–5747.

    Article  CAS  PubMed  Google Scholar 

  37. Kok, L. P., Visser, P. E., and Boon, M. E. (1994) Programming the microwave oven. J. Neurosci. Meth. 55, 119–124.

    Article  CAS  Google Scholar 

  38. Marani, E. and Horobin, R. W. (1994) Overview of microwave applications in the Neurosciences. J. Neurosci. Meth. 55, 111–117.

    Article  CAS  Google Scholar 

  39. Griffiths, G. (1993) Fine Structure Immunocytochemistry, Springer-Verlag, Heidelberg.

    Google Scholar 

  40. Login, G. R. and Dvorak, A. M. (1994) The Microwave Tool Book, Beth Israel Hospital, Boston.

    Google Scholar 

  41. Zhong, Q., Gvozdenovic-Jeremic, J., Webster, P., Zhou, J., and Greenberg, M. L. (2005) Loss of function of KRE5 suppresses temperature sensitivity of mutants lacking mitochondrial anionic lipids. Mol. Biol. Cell 16, 665–675.

    Article  CAS  PubMed  Google Scholar 

  42. Glauert, A. M. (1991) Embedding, in Practical Methods in Electron Microscopy, vol. 3 (Glauert, A., ed.), Elsevier North-Holland Biomedical Press, Amsterdam, 123–176.

    Google Scholar 

  43. Hayat, M. A. (1989) Rinsing, dehydrating and embedding, in Principles and Techniques of Electron Microscopy (Hayat, M., ed.), MacMillan Press, Hong Kong, 79–137.

    Google Scholar 

  44. Giammara, B. L. (1993) Microwave embedment for light and electron microscopy using epoxy resins, LR White, and other polymers. Scanning 15, 82–87.

    CAS  Google Scholar 

  45. Mishra, S., Webster, P., and Davies, M. E. (2004) PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur. J. Cell Biol. 83, 97–111.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Webster, P. (2007). Microwave-Assisted Processing and Embedding for Transmission Electron Microscopy. In: Kuo, J. (eds) Electron Microscopy. Methods in Molecular Biology™, vol 369. Humana Press. https://doi.org/10.1007/978-1-59745-294-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-294-6_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-573-6

  • Online ISBN: 978-1-59745-294-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics