Skip to main content

Analysis of Plant Regulatory DNA sequences by the Yeast-One-Hybrid Assay

  • Protocol
Plant Signal Transduction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 479))

Abstract

Regulatory DNA sequences harbor the essential information to control specific gene expression changes and integrate information derived from upstream signaling cascades. This regulatory potential is mediated by direct binding of proteins, e.g., transcription factors, to defined stretches of DNA motifs in regulatory regions. The analysis of these DNA regions, at which several signaling pathways could merge to orchestrate gene expression, is still a challenging task. To date, the combination of functional approaches in the laboratory and computer aided sequence evaluation is frequently used for regulatory sequence analysis. The yeast-one-hybrid method is a possible approach to test for direct binding of plant proteins to DNA in a heterologous system. Moreover, it is the most frequently used method for the identification of DNA-binding proteins targeting a given DNA sequence by screening a cDNA library.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guthrie, C. and Fink, G. R. (eds.), (1991) Guide to Yeast Genetics and Molecular Biology, Methods in Enzymology, Vol. 169, Academic Press, San Diego.

    Google Scholar 

  2. Adams, A., Gottschling, D. A., Kaiser, C. A., and Stearns, T. (1998) Methods in Yeast Genetics, A Cold Spring Harbor Laboratory Course Manual, 1997 Edition, Cold Spring Harbor Laboratory Press.

    Google Scholar 

  3. Fields, S. and Sternglanz, R. (1994) The two-hybrid system: An assay for protein- protein interactions. Trends Genet. 10, 286–292.

    Article  PubMed  CAS  Google Scholar 

  4. Johnson, N. and Varshavsky, A. (1994) Split ubiquitin as a sensor of protein interactions in vivo. Proc. Natl. Acad. Sci. USA 91, 1034–1044.

    Article  Google Scholar 

  5. Zhang, J. and Lautar, S. (1996) A yeast three-hybrid method to clone ternary protein complex components. Anal. Biochemistry 242,68–72.

    Article  CAS  Google Scholar 

  6. SenGupta, D. J., Zhang, V., Kraemer, V., Pochart, P., Fields, S. and Wickens, M. (1996) A three-hybrid system to detect RNA-protein interactions in vivo. Proc. Natl. Acad. Sci. USA 93, 8496–8501.

    Article  PubMed  CAS  Google Scholar 

  7. Zhu, L. and Hannon, G. J. (eds.) (2000) Yeast Hybrid Technologies. Eaton Publishing, BioTechniques Books Division, Natick, MA.

    Google Scholar 

  8. Lehming, N. (2002) Analysis of protein - protein proximities using the split ubiquitin system. Brief Funct Genomic Proteomic. 1, 230–238.

    Article  PubMed  CAS  Google Scholar 

  9. Walter, M., Chaban, C., Schütze, K., Batistic, O., Weckermann, K., Näke, C., Blazevic, D. , Grefen, C., Schumacher, K., Oecking, C. , Harter, K. and Kudla, J. (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J. 40, 428–438.

    Article  PubMed  CAS  Google Scholar 

  10. Ma, J. and Ptashne, M. (1987) Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48, 847–853.

    Article  PubMed  CAS  Google Scholar 

  11. Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature 340, 245–246.

    Article  PubMed  CAS  Google Scholar 

  12. Rüden, D. M., Ma, J., Li, Y., Wood, K. and Ptashne, M. (1991) Generating yeast transcriptional activators containing no yeast protein sequences. Nature 350, 250–252.

    Article  PubMed  Google Scholar 

  13. Li, J. J. and Herskowitz, I. (1993) Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system. Science 262, 1870–1874.

    Article  PubMed  CAS  Google Scholar 

  14. Lehming, N., Thanos, D., Brickman, J. M., Ma, J., Maniatis, T. and Ptashne, M. (1994) An HMG-like protein that can switch a transcriptional activator to a repressor. Nature 371,175–179.

    Article  PubMed  CAS  Google Scholar 

  15. Bartel, P. and Fields, S. (1995) Analyzing protein-protein interactions using two- hybrid system. METHODS: A Companion of Methods in Enzymology 254, 241–263.

    Article  CAS  Google Scholar 

  16. Wilson, T., Padgett, K., Johnston, M. and Milbrandt, J. (1993) A genetic method for defining DNA-binding domains: application to the nuclear receptor NGFI-B. Proc. Natl. Acad. Sei. USA 90, 9186–9190.

    Article  CAS  Google Scholar 

  17. Ausubel, F. M., Brent, R, Kingston, RE., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. (1995) Current Protocols in Molecular Biology, John Wiley & Sons.

    Google Scholar 

  18. Meijer, A. H., Ouwerkerk, P. B. and Hoge, J. H. (1998) Vectors for transcription factor cloning and target site identification by means of genetic selection in yeast. Yeast 14, 1407–1415.

    Article  PubMed  CAS  Google Scholar 

  19. Wei, Z., Angerer, R. C. and Angerer, L. M. (1999) Identification of a new sea urchin ets protein, SpEts4, by yeast one-hybrid screening with the hatching enzyme promoter. Mol. Cell. Biol. 19,1271–1278.

    PubMed  CAS  Google Scholar 

  20. Jolly, E. R, Chin, C. S., Herskowitz, I. and Li, H. (2005) Genome-wide identification of the regulatory targets of a transcription factor using biochemical characterization and computational genomic analysis. BMC Bioinformatics 6, 275.

    Article  PubMed  Google Scholar 

  21. Lopato, S., Bazanova, N., Morran, S., Milligan, A. S., Shirley, N. and Langridge, P. (2006) Isolation of plant transcription factors using a modified yeast one-hybrid system. Plant Methods 2, 3.

    Article  PubMed  Google Scholar 

  22. Fields, S. (1993) The two-hybrid system to detect protein-protein interactions. METHODS: A Companion to Methods in Enzymology 5,116–124.

    Article  CAS  Google Scholar 

  23. Vidal, M. and Legrain, P. (1999) Yeast forward and reverse “n”-hybrid system. Nucl. Acids Res. 27,919–929.

    Article  PubMed  CAS  Google Scholar 

  24. Deplancke, B., Dupuy, D., Vidal, M. and Walhout, A. J. M. (2004) A Gateway-Compatible Yeast One-Hybrid System. Genome Res. 14, 2093–2101.

    Article  PubMed  CAS  Google Scholar 

  25. Gietz, D., St Jean, A., Woods, R. A. and Schiestl, R. H. (1992) Improved method for high efficiency transformation of intact yeast cells. Nucl. Acids Res. 20, 1425.

    Article  PubMed  Google Scholar 

  26. Sieweke, M. (2000) Detection of transcription factor partners with a yeast one hybrid screen. Methods Mol Biol. 130, 59–77.

    PubMed  CAS  Google Scholar 

  27. Aho, S., Arffman, A., Pummi, T. and Uitto, J. (1997) A novel reporter gene MEL1 for the yeast two-hybrid system. Anal Biochem. 253, 270–272.

    Article  PubMed  CAS  Google Scholar 

  28. Matchmaker Library Construction and Screen Kit (2000) Clontechniques XV(4), 5-7.

    Google Scholar 

  29. Bartel, P., Chein, C., Sternglanz, R. and Fields, S. (1993) Elimination of false positives that arise in using the two hybrid system. Biotechniques 14, 920–924.

    PubMed  CAS  Google Scholar 

  30. Bendixen, C., Gangloff, S. and Rothsein, R. (1994) A yeast mating - selection scheme for detection of protein-protein interactions. Nucl. Acids Res. 22, 1778–1779.

    Article  PubMed  CAS  Google Scholar 

  31. Liaw, G.J. (1994) Improved protocol for directional multimerization of a DNA fragment. Biotechniques 17, 668–670.

    PubMed  CAS  Google Scholar 

  32. Berendzen, K. W., Stueber, K., Harter, K. and Wanke, D. (2006) Cis-motifs upstream of the transcription and translation initiation sites are effectively revealed by their positional disequilibrium in eukaryote genomes using frequency distribution curves. BMC Bioinformatics 7, 522.

    Article  PubMed  Google Scholar 

  33. Rushton, P. J., Reinstadler, A., Lipka, V., Lippok, B. and Somssich, I. E. (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell 14, 749–762.

    Article  PubMed  CAS  Google Scholar 

  34. Sathe, G., O’Brian, S., McLaughlin, M., Watson, F. and Livi, G. (1991) Use of polymerase chain reaction for rapid detection of gene insertions in whole yeast cells. Nucl. Acids Res. 19,4775.

    Article  PubMed  Google Scholar 

  35. Miller, J. H. (1972) Experiments in Molecular Genetics. A Cold Spring Harbor Laboratory Manual, Cold Spring Harbor Laboratory Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wanke, D., Harter, K. (2009). Analysis of Plant Regulatory DNA sequences by the Yeast-One-Hybrid Assay. In: Pfannschmidt, T. (eds) Plant Signal Transduction. Methods in Molecular Biology, vol 479. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-289-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-289-2_19

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-943-7

  • Online ISBN: 978-1-59745-289-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics