Skip to main content

Phosphatase Activities Analyzed by in vivo Expressions

  • Protocol
Plant Signal Transduction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 479))

Abstract

Protein phosphatases act to reverse phosphorylation-related modifications induced by protein kinases. Type 2C protein phosphatases (PP2C) are monomeric Ser/Thr phosphatases that require a metal for their activity and are abundant in prokaryotes and eukaryotes. In plants, such as Medicago and Ambidopsis PP2Cs control several essential processes, including ABA signaling, development, and wound-induced mitogen-activated protein kinase (MAPK) pathways. In vitro assays with recombinant proteins and yeast two-hybrid systems usually provide initial information about putative PP2C substrates; however, these observations have to be verified in vivo. Therefore, a method for transient expression in isolated Ambidopsis suspension cell protoplasts was developed to assay PP2C action in living cells. This system has proven to be very useful in producing active enzymes and their substrates and in performing enzymatic reactions in vivo. Transient gene expression in isolated cells enabled assembly of functional protein kinase cascades and the creation of phosphorylated targets for PP2Cs. The method is based on the co-transformation and transient co-expression of different PP2C proteins with MAPK. It shows that epitope-tagged PP2C and MAPK proteins exhibit high enzymatic activities and produce substantial protein amounts easily monitored by Western blot analysis. Additionally, PP2C phosphatase activities can be directly tested in protein extracts from protoplasts, suggesting a possibility for analysis of activities of new PP2C family members.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meskiene, I., Bogre, L., Glaser, W, Balog, J., Brandstotter, M., Zwerger, K., Ammerer, G., and Hirt, H. (1998) MP2C, a plant protein phosphatase 2C, functions as a negative regulator of mitogen-activated protein kinase pathways in yeast and plants. Proc. Natl. Acad. Sei. U S A 95,1938–1943.

    Article  CAS  Google Scholar 

  2. Meskiene, I., Baudouin, E., Schweighofer, A., Liwosz, A., Jonak, C., Rodriguez, P. L., Jelinek, H., and Hirt, H. (2003) The Stress- induced protein phosphatase 2C is a negative regulator of a mitogen-activated protein kinase./. Biol. Chem. 278,18945–18945.

    Article  CAS  Google Scholar 

  3. Warmka, J., Hanneman, J., Lee, J., Amin, D. , and Ota, I. (2001) Ptcl, a type 2C Ser/ Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen- activated protein kinase Hogl. Mol. Cell Biol. 21, 51–60.

    Article  PubMed  CAS  Google Scholar 

  4. Nguyen, A. N. and Shiozaki, K. (1999) Heat-shock-induced activation of stress MAP kinase is regulated by threonine- and tyrosine-specific phosphatases. Genes Dev. 13,1653–1663.

    Article  PubMed  CAS  Google Scholar 

  5. Takekawa, M., Maeda, T., and Saito, H. (1998) Protein phosphatase 2Calpha inhibits the human stress-responsive p38 and JNK MAPK pathways. Embo J. 17, 4744–4752.

    Article  PubMed  CAS  Google Scholar 

  6. Takekawa, M., Adachi, M., Nakahata, A., Nakayama, I., Itoh, F., Tsukuda, H., Taya, Y., and Imai, K. (2000) p53-inducible wipl phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. Embo J. 19, 6517–6526.

    Article  PubMed  CAS  Google Scholar 

  7. Baril, C. and Therrien, M. (2006) Alphabet, a Ser/Thr phosphatase of the protein phosphatase 2C family, negatively regulates RAS/MAPK signaling in Drosophila. Dev. Biol. 294, 232–245.

    Article  PubMed  CAS  Google Scholar 

  8. Bulavin, D. V. and Fornace, A. J., Jr. (2004) p38 MAP kinase’s emerging role as a tumor suppressor. Adv. Cancer Res. 92, 95–118.

    Article  PubMed  CAS  Google Scholar 

  9. Kiegerl, S., Cardinale, F., Siligan, C., Gross, A. , Baudouin, E., Liwosz, A., Eklof, S., Till, S., Bogre, L., Hirt, H., and Meskiene, I. (2000) SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell 12, 2247–2258.

    PubMed  CAS  Google Scholar 

  10. Cardinale, F., Meskiene, I., Ouaked, F., and Hirt, H. (2002) Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases. Plant Cell 14, 1–10.

    Article  Google Scholar 

  11. Kovtun, Y., Chiu, W. L., Zeng, W., and Sheen, J. (1998) Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395, 716–720.

    Article  PubMed  CAS  Google Scholar 

  12. Schweighofer, A., Hirt, H., and Meskiene, I. (2004) Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci. 9, 236–43.

    Article  PubMed  CAS  Google Scholar 

  13. Saez, A., Apostolova, N., Gonzalez-Guzman, M., Gonzalez-Garcia, M.P., Nicolas, C., Lorenzo, O., and Rodriguez, P.L. (2004) Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signaling. Plant J. 37, 354–369.

    Article  PubMed  CAS  Google Scholar 

  14. Leung, J., Merlot, S., and Giraudat, J. (1997) The Arabidopsis ABSCISIC ACID- INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9, 759–771.

    PubMed  CAS  Google Scholar 

  15. Rodriguez, P. L., Benning, G., and Grill, E. (1998) AB 12, a second protein phosphatase 2C involved in abscisic acid signal transduction in Arabidopsis. FEBS Lett. 421, 185–190.

    Article  PubMed  CAS  Google Scholar 

  16. Kerk, D. (2006) Genome-scale discovery and characterization of class-specific protein sequences: an example using the protein phosphatases of Arabidopsis thaliana. Methods Mol. Biol. 365, 347–370.

    Google Scholar 

  17. Merlot, S., Gosti, F., Guerrier, D., Vavasseur, A., and Giraudat, J. (2001) The ABI1 and AB 12 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signaling pathway. Plant J. 25, 295–303.

    Article  PubMed  CAS  Google Scholar 

  18. Mishra, G., Zhang, W., Deng, F., Zhao, J., and Wang, X. (2006) A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312,264–266.

    Article  PubMed  CAS  Google Scholar 

  19. Saez, A., Robert, N., Maktabi, M. H., Schroeder, J. I., Serrano, R, and Rodriguez, P. L. (2006) Enhancement of abscisic acid sensitivity and reduction of water consumption in Arabidopsis by combined inactivation of the protein phosphatases type 2C ABII and HAB1. Plant Physiol. 141, 1389–1399.

    Article  PubMed  CAS  Google Scholar 

  20. Yoshida, T., Nishimura, N., Kitahata, N., Kuromori, T., Ito, T., Asami, T., Shinozaki, K., and Hirayama, T. (2006) ABA-hyper- sensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiol. 140,115–126.

    Article  PubMed  CAS  Google Scholar 

  21. Kuhn, J. M., Boisson-Dernier, A., Dizon, M. B., Maktabi, M. H., and Schroeder, J. I. (2006) The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abhl on AtPP2CA mRNA. Plant Physiol. 140,127–139.

    Article  PubMed  CAS  Google Scholar 

  22. Stone, J. M., Trotochaud, A. E., Walker, J. C. , and Clark, S. E. (1998) Control of meristem development by CLAVATA1 receptor kinase and kinase-associated protein phosphatase interactions. Plant Physiol. 117, 1217–1225.

    Article  PubMed  CAS  Google Scholar 

  23. Ding, Z.,Wang, H., Liang, X., Morris, E.R., Gallazzi, F., Pandit, S., Skolnick, J., Walker, J.C.., and Van Doren, S.R. (2007) Phospho- protein and Phosphopeptide Interactions with the FHA Domain from Arabidopsis Kinase-Associated Protein Phosphatase. Biochemistry 46, 2684–2696.

    Article  PubMed  CAS  Google Scholar 

  24. Topfer, R, Matzeit, V., Gronenborn, B., Schell, J., and Steinbiss, H.H. (1987) A set of plant expression vectors for transcriptional and translational fusions. Nucleic Acids Res. 15, 5890.

    Article  PubMed  Google Scholar 

  25. Restrepo, M. A., Freed, D. D., and Carrington, J. C. (1990) Nuclear transport of plant potyviral proteins. Plant Cell 2,987–998.

    PubMed  CAS  Google Scholar 

  26. Holtorf, S., Apel, K, and Bohlmann, H. (1995) Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. Plant Mol. Biol. 29, 637–646.

    Article  PubMed  CAS  Google Scholar 

  27. Chiu, W., Niwa, Y., Zeng, W., Hirano, T., Kobayashi, H., and Sheen, J. (1996) Engineered GFP as a vital reporter in plants. Curr. Biol. 6, 325–330.

    Article  PubMed  CAS  Google Scholar 

  28. Dangl, J. L., Hauffe, K. D., Lipphardt, S., Hahlbrock, K, and Scheel, D. (1987) Parsley protoplasts retain differential responsiveness to u.v. light and fungal elicitor. Embo J. 6,2551–2556.

    CAS  Google Scholar 

  29. Sheen, J. (1998) Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proc. Natl. Acad. Sci. USA9S, 975–980.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schweighofer, A., Ayatollahi, Z., Meskiene, I. (2009). Phosphatase Activities Analyzed by in vivo Expressions. In: Pfannschmidt, T. (eds) Plant Signal Transduction. Methods in Molecular Biology, vol 479. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-289-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-289-2_16

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-943-7

  • Online ISBN: 978-1-59745-289-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics