Skip to main content

Multiple Dimensions in Plant Signal Transduction: An Overview

  • Protocol
Plant Signal Transduction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 479))

Abstract

Each process involved in the generation of plant body form and function is under the control of signals from the exogenous and/or endogenous plant environment. These controls are necessary for adequate plant adjustment to the prevailing conditions, but at the same time they impose the need for sophisticated mechanisms to achieve adequate sensitivity towards signals and stability against noise. To cope with this challenge plants use multiple signals, multiple receptors even for the same signal and interactive signal transducers with multiple targets. Here we provide an overview of this multiplicity and its functional significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Casal, J.J., Luccioni, L., Oliverio, K.A., and Boccalandro, H.E. (2003) Light, phytochrome signalling and photomorphogenesis in Arabidopsis. Photochem. Photo biol. Sei. 2, 625–636.

    Article  CAS  Google Scholar 

  2. Benech Arnold, RL., Ghersa, C.M., Sanchez, KA., and Garcia Fernandez, A.E. (1988) The role of fluctuating temperatures in the germination and establishment of Sorghum halepense (L.) Pers. Regulation of germination under leaf canopies. Funct. Ecol. 2, 311–318.

    Article  Google Scholar 

  3. Fey, V., Wagner, R., Bräutigam, K., and Pfannschmidt, T. (2005) Photosynthetic redox control of nuclear gene expression. J. Exp. Bot. 56,1491–1498

    Article  PubMed  CAS  Google Scholar 

  4. Rojo, E., Sharma, V.K., Kovaleva, V., Raikhel, N.V., and Fletcher, J.C. (2002) CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. Plant Cell 14, 969–977.

    Article  PubMed  CAS  Google Scholar 

  5. Kobayashi, K. and Zambryski, P. (2007) RNA silencing and its cell-to-cell spread during Arabidopsis embryogenesis. Plant J. 50, 597–604.

    Article  PubMed  CAS  Google Scholar 

  6. Endo, M., Nakamura, S., Araki, T., Mochizuki, N., and Nagatani, A. (2005) Phytochrome B in the mesophyll delays flowering by suppressing FLOWERING LOCUS T expression in Arabidopsis vascular bundles. Plant Cell 17,1941–1952.

    Article  PubMed  CAS  Google Scholar 

  7. Leyser, O. (2005) The fall and rise of apical dominance. Curr. Opin. Genet. Dev. 15, 468–471.

    Article  PubMed  CAS  Google Scholar 

  8. Jiang, F. and Hartung, W. (2007) Long-distance signalling of abscisic acid (ABA): The factors regulating the intensity of the ABA signal .J. Exp. Bot. doi:10.1093/jxb/erml27.

    Google Scholar 

  9. Takada, S. and Goto, K. (2003) TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell 15, 2856–2865.

    Article  PubMed  CAS  Google Scholar 

  10. Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H. , Notaguchi, M., Goto, K., and Araki, T. (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052–1056.

    Article  PubMed  CAS  Google Scholar 

  11. Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U., and Weigel, D. (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309 1056–1059.

    Article  PubMed  CAS  Google Scholar 

  12. Mathieu, J., Warthmann, N., Kiittner, J., and Schmid, M. (2007) Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr. Biol. 17,1055–1060.

    Article  PubMed  CAS  Google Scholar 

  13. Jaeger, K.E. and Wigge, P.A. (2007) FT protein acts as a long-range signal in Arabidopsis. Curr. Biol. 17, 1050–1054.

    Article  PubMed  CAS  Google Scholar 

  14. Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., and Coupland, G. (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316, 1030–1033.

    Article  PubMed  CAS  Google Scholar 

  15. Tamaki, S., Matsuo, S., Wong, H.L., Yokoi, S., and Shimamoto, K. (2007) Hd3a protein is a mobile flowering signal in rice. Science 316,1033–1036.

    Article  PubMed  CAS  Google Scholar 

  16. Lin, M.-K, Belanger, H., Lee, Y.-J., Varkonyi-Gasic, E., Taoka, K.-I., Miura, E., Xoconostle-Cazares, B., Gendler, K., Jorgensen, R.A., Phinney, B., Lough, T.J., and Lucas, W.J. (2007) FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 19, 1488–1506.

    Article  PubMed  CAS  Google Scholar 

  17. Vierstra, R.D. (2003) The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci. 8, 135–142.

    Article  PubMed  CAS  Google Scholar 

  18. Dharmasiri, N., Dharmasiri, S., and Estelle, M. (2005) The F-box protein TIR1 is an auxin receptor. Nature 435, 441–445.

    Article  PubMed  CAS  Google Scholar 

  19. Kepinski, S. and Leyser, O. (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435, 446–451.

    Article  PubMed  CAS  Google Scholar 

  20. Tan, X., Calderon-Villalobos, L.I.A., Sharon, M., Zheng, C., Robinson, C.V., Estelle, M., and Zheng, N. (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645.

    Article  PubMed  CAS  Google Scholar 

  21. Ueguchi-Tanaka, M., Ashikari, M., Nakajima, M., Itoh, H., Katoh, E., Kobayashi, M., Chow, T.-Y., Hsing, Y.-I.C., Kitano, H., Yamaguchi, I., and Matsuoka, M. (2005) GIBBERELLIN INSENSITIVE DWARF 1 encodes a soluble receptor for gibberellin. Nature 437, 693–698.

    Article  PubMed  CAS  Google Scholar 

  22. Osterlund, M.T., Hardtke, N.W., and Deng, X.W. (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405, 462–466.

    Article  PubMed  CAS  Google Scholar 

  23. Saijo, Y., Sullivan, J.A., Wang, H., Yang, J., Shen, Y., Rubio, V., Ma, L., Hoecker, U. and Deng, X.-W. (2003) The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev. 17, 2642–2647.

    Article  PubMed  CAS  Google Scholar 

  24. Seo, H.S., Yang, J.-Y., Ishikawa, M., Bolle, C. , Ballesteros, M.L., and Chua, N.-H. (2003) LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 423, 995–999.

    Article  PubMed  CAS  Google Scholar 

  25. Osterlund, M.K and Deng, X.-W. (1998) Multiple photoreceptors mediate the light induced reduction of GUS-COP1 from Arabidopsis hypocotyl nuclei. Plant J. 16,201–208.

    Article  PubMed  CAS  Google Scholar 

  26. O’Malley, R.C., Rodriguez, F.I., Esch, J.J., Binder, B.M., O’Donnell, P., Klee, H.J., and Bleecker, A.B. (2005) Ethylene-binding activity, gene expression levels, and receptor system output for ethylene receptor family members from Arabidopsis and tomato. Plant J. 41, 651–659.

    Article  PubMed  Google Scholar 

  27. Hua, J. and Meyerowitz, E.M. (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94, 261–271.

    Article  PubMed  CAS  Google Scholar 

  28. Yasumura, Y., Crumpton-Taylor, M., Fuentes, S., and Harberd, N.P. (2007) Step- by-step acquisition of the gibberellin-DELLA growth-regulatory mechanism, during land- plant evolution. Curr. Biol. 17, 1225–1230.

    Article  PubMed  CAS  Google Scholar 

  29. Cho, Y.-H., Yoo, S.-D., and Sheen, J. (2006) Regulatory functions of nuclear hexokinase complex in glucose signaling. Cell127, 579–589.

    Article  PubMed  CAS  Google Scholar 

  30. Casai, J.J. (2000) Phytochromes, cryptochromes, phototropin: Photoreceptor interactions in plants. Photochem. Photobiol. 71,1–11.

    Article  Google Scholar 

  31. Quail, P.H., Boylan, M.T., Parks, B.M., Short, T.W., Xu, Y., and Wagner, D. (1995) Phytochromes: Photosensory perception and signal transduction. Science 268, 675–680.

    Article  PubMed  CAS  Google Scholar 

  32. Yanovsky, M.J., Casai, J.J., and Whitelam, G. C. (1995) Phytochrome A, phytochrome B and HY4 are involved in hypocotyl growth responses to natural radiation in Arabidopsis: Weak de-etiolation of the phyA mutant under dense canopies. Plant Cell Environ. 18,788–794.

    Article  CAS  Google Scholar 

  33. Hirayama, T. and Shinozaki, K. (2007) Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sei. 12, 343–351.

    Article  CAS  Google Scholar 

  34. Suarez-Lopez, P., Wheatley, K., Robson, F. , Onouchi, H., Valverde, F., and Coupland, G. (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410, 1116–1120.

    Article  PubMed  CAS  Google Scholar 

  35. Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A., and Coupland, G. (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303,1003–1006.

    Article  PubMed  CAS  Google Scholar 

  36. Yanovsky, M.J. and Kay, S.A. (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419, 308–312.

    Article  PubMed  CAS  Google Scholar 

  37. Nozue, K., Covington, M.F., Duek, P.D., Lorrain, S., Fankhauser, C., Harmer, S.L., and Maloof, J.N. (2007) Rhythmic growth explained by coincidence between internal and external cues. Nature 448, 358–61

    Article  PubMed  CAS  Google Scholar 

  38. Nagy, F. and Schäfer, E. (2000) Nuclear and cytosolic events of light-induced, phytochrome-regulated signaling in higher plants. EMBOJ. 19,157–163.

    Article  CAS  Google Scholar 

  39. Hiltbrunner, A., Viczian, A., Bury, E., Tscheuschler, A., Kircher, S., Toth, R, Honsberger, A., Nagy, F., Fankhauser, C., and Schafer, E. (2005) Nuclear accumulation of the phytochrome A photoreceptor requires FHY1. Curr. Biol. 15, 2125–2130.

    Article  PubMed  CAS  Google Scholar 

  40. Röster, J., Klein, I., and Zeidler, M. (2007) Arabidopsis fljl/ßyl double mutant reveals a distinct cytoplasmic action of phytochrome A. Proc. Nat. Acad. Sei. 104,10737–10742.

    Article  Google Scholar 

  41. Al-Sady, B., Ni, W., Kircher, S., Schäfer, E. , and Quail, PH. (2006) Photoactivated phytochrome induces rapid PIF3 phospho rylation prior to proteasome-mediated degradation. Mol. Cell 23, 439–446.

    Article  PubMed  CAS  Google Scholar 

  42. Cerdán, P.D., Staneloni, R.J., Ortega, J., Bunge, M.M., Rodríguez-Batiller, M.J., Sánchez, R.A., and Casal, J.J. (2000) Sustained but not transient phytochrome A signaling targets a region of an Lhcbl*2 promoter not necessary for phytochrome B action. Plant Cell 12,1203–1211.

    PubMed  Google Scholar 

  43. Oyama, T., Shimura, Y., and Okada, K. (1997) The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus - induced development of root and hypocotyl. Genes Dev. 11, 2983–2995.

    Article  PubMed  CAS  Google Scholar 

  44. Hardtke, C.S. and Deng, X.-W. (2000) The cell biology of the COP/DET/FUS proteins. Regulating proteolysis in photo - morphogenesis and Beyond? Plant Physiol. 124,1548–1557.

    CAS  Google Scholar 

  45. Kepinski, S. and Leyser, O. (2002) Ubiquitination and auxin signaling: A degrading story. Plant Cell 14, S81–S95.

    PubMed  CAS  Google Scholar 

  46. Peiter, E., Maathuis, F.J.M., Mills, L.N., Knight, H., Pelloux, J., Hetherington, A.M., and Sanders, D. (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434,404–408.

    Article  PubMed  CAS  Google Scholar 

  47. Young, J.J., Mehta, S., Israelsson, M., Godoski, J., Grill, E., and Schroeder, J.I. (2006) C02 signaling in guard cells: Calcium sensitivity response modulation, a Ca2+-independent phase, and C02 insensitivity of the gca2 mutant. Proc. Nat. Acad. Sci. 103,7506–7511.

    Article  PubMed  CAS  Google Scholar 

  48. Rajagopalan, R, Vaucheret, H., Trejo, J., and Bartel, D.P. (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev. 20, 3407–3425.

    Article  PubMed  CAS  Google Scholar 

  49. Palatnik, J.F., Allen, E., Wu, X., Schommer, C. , Schwab, R, Carrington, J.C., and Weigel, D. (2003) Control of leaf morphogenesis by microRNAs. Nature 425, 257–263.

    Article  PubMed  CAS  Google Scholar 

  50. Aukerman, M.J. and Sakai, H. (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15, 2730–2741.

    Article  PubMed  CAS  Google Scholar 

  51. 51. Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., and Jones, J.D.G. (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312,436–439.

    Article  PubMed  CAS  Google Scholar 

  52. Chiou, T.-J., Aung, K, Lin, S.-I., Wu, Ch.- Ch., Chiang, S.-F., and Su, Ch.-L. (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18, 412–421.

    Article  PubMed  CAS  Google Scholar 

  53. Khanna, R, Shen, Y., Toledo-Ortiz, G., Kikis, E.A., Johannesson, H., Hwang, Y.-S., and Quail, P.H. (2006) Functional profiling reveals that only a small number of phytochrome-regulated early-response genes in Arabidopsis are necessary for optimal deetiolation. Plant Cell 18, 2157–2171.

    Article  PubMed  CAS  Google Scholar 

  54. Henderson, I.R and Dean, C. (2004) Control of Arabidopsis flowering: The chill before the bloom. Development 131, 3829–3838.

    Article  PubMed  CAS  Google Scholar 

  55. Michaels, S.D. and Amasino, RM. (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11, 949–956.

    PubMed  CAS  Google Scholar 

  56. Sung, S. and Amasino, R.M. (2004) Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427,159–164.

    Article  PubMed  CAS  Google Scholar 

  57. Cerdan, P.D. and Chory, J. (2003) Regulation of flowering time by light quality. Nature 423, 881–885.

    Article  PubMed  CAS  Google Scholar 

  58. Backstrom, S., Elfving, N., Nilsson, R, Wingsle, G., and Bjorklund, S. (2007) Purification of a plant mediator from Arabidopsis thaliana Identifies PFT1 as the Med25 subunit. Mol. Cell 26, 717–729.

    Article  PubMed  Google Scholar 

  59. Zhu, X., Gerstein, M., and Snyder, M. (2007) Getting connected: analysis and principles of biological networks. Genes Dev. 21, 1010–1024.

    Article  PubMed  CAS  Google Scholar 

  60. Barabasi, A.L. and Albert, R (1999) Emergence of scaling in random networks. Science 286, 509–512.

    Article  PubMed  Google Scholar 

  61. Barabasi, A.L. and Oltavi, Z.N. (2004) Network biology: Understanding the cell’s functional organization. Nature Rev. Genet. 5, 101–113.

    Article  PubMed  CAS  Google Scholar 

  62. Kitano, H. (2004) Biological robustness. Nature Rev. Genet. 5, 828–837.

    Article  Google Scholar 

  63. Gomez-Mena, C., de Folter, S., Costa, M.M.R, Angenent, G.C., and Sablowski, R. (2005) Transcriptional program controlled by the floral homeotic gene Agamous during early organogenesis. Development 132,429–438

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Casal, J. (2009). Multiple Dimensions in Plant Signal Transduction: An Overview. In: Pfannschmidt, T. (eds) Plant Signal Transduction. Methods in Molecular Biology, vol 479. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-289-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-289-2_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-943-7

  • Online ISBN: 978-1-59745-289-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics