Skip to main content

Organelle Proteomics

  • Protocol
  • First Online:
Two-Dimensional Electrophoresis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 519))

Summary

The proteome of the cell is at the frontier of being too complex for proteomic analysis. Organelles provide a step up. Organelles compartmentalize the cell enabling a proteome, physiology and metabolism analysis in time and in space. Protein complexes separated by electrophoresis have been identified as the next natural level to characterize the organelles’ compartmentalized membrane and soluble proteomes by mass spectrometry. Work on mitochondria and chloroplasts has shown where we are in the characterization of complex proteomes to understand the network of endogenous and extrinsic factors which regulate growth and development, adaptation and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu, C., and Cohen, L. (2004) Tissue sample preparation – not the same old grind. LC-GC Europe 17, 96–103

    Google Scholar 

  2. Pappas, D., and Wang, K. (2007) Cellular separations: a review of new challenges in analytical chemistry. Anal Chim Acta 601, 26–35

    Article  PubMed  CAS  Google Scholar 

  3. Pasquali, C., Fialka, I., and Huber, L. A. (1999) Subcellular fractionation, electromigration analysis and mapping of organelles. J Chromatogr B Biomed Sci Appl 722, 89–102

    Article  PubMed  CAS  Google Scholar 

  4. James Morre, D., and Andersson, B. (1999) Isolation of all major organelles and membranous cell components from a single homogenate of green leaves. Methods Enzymol 228, 412–419

    Article  Google Scholar 

  5. Murayama, K., Fujimura, T., Morita, M., and Shindo, N. (2001) One-step subcellular fractionation of rat liver tissue using a Nycodenz density gradient prepared by freezing-thawing and two-dimensional sodium dodecyl sulfate electrophoresis profiles of the main fraction of organelles. Electrophoresis 22, 2872–2880

    Article  PubMed  CAS  Google Scholar 

  6. Krivankova, L., and Bocek, P. (1998) Continuous free-flow electrophoresis. Electrophoresis 19, 1064–1074

    Article  PubMed  CAS  Google Scholar 

  7. Zischka, H., Weber, G., Weber, P. J., Posch, A., Braun, R. J., Buhringer, D., et al (2003) Improved proteome analysis of Saccharomyces cerevisiae mitochondria by free-flow electrophoresis. Proteomics 3, 906–916

    Article  PubMed  CAS  Google Scholar 

  8. Olson, K. J., Ahmadzadeh, H., and Arriaga, E. A. (2005) Within the cell: analytical techniques for subcellular analysis. Anal Bioanal Chem 382, 906–917

    Article  PubMed  CAS  Google Scholar 

  9. Dunkley, T. P., Dupree, P., Watson, R. B., and Lilley, K. S. (2004) The use of isotope-coded affinity tags (ICAT) to study organelle proteomes in Arabidopsis thaliana. Biochem Soc Trans 32, 520–523

    Article  PubMed  CAS  Google Scholar 

  10. Heazlewood, J. L., Tonti-Filippini, J. S., Gout, A. M., Day, D. A., Whelan, J., and Millar, A. H. (2004) Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell 16, 241–256

    Article  PubMed  CAS  Google Scholar 

  11. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805

    Article  PubMed  CAS  Google Scholar 

  12. Hanson, M. R., and Kohler, R. H. (2001) GFP imaging: methodology and application to investigate cellular compartmentation in plants. J Exp Bot 52, 529–539

    Article  PubMed  CAS  Google Scholar 

  13. Tian, G. W., Mohanty, A., Chary, S. N., Li, S., Paap, B., Drakakaki, G., et al (2004) High-throughput fluorescent tagging of full-length Arabidopsis gene products in planta. Plant Physiol 135, 25–38

    Article  PubMed  CAS  Google Scholar 

  14. Canas, B., Pineiro, C., Calvo, E., Lopez-Ferrer, D., and Gallardo, J. M. (2007) Trends in ­sample preparation for classical and second generation proteomics. J Chromatogr A 1153, 235–258

    Article  PubMed  CAS  Google Scholar 

  15. O’Farrell, P. H., (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250, 4007–4021

    PubMed  Google Scholar 

  16. Lopez, J. L. (2007) Two-dimensional electrophoresis in proteome expression analysis. J Chromatogr B Analyt Technol Biomed Life Sci 849, 190–202

    Article  PubMed  CAS  Google Scholar 

  17. Drews, O., Reil, G., Parlar, H., and Gorg, A. (2004) Setting up standards and a ­reference map for the alkaline proteome of the Gram-positive bacterium Lactococcus lactis. ­Proteomics 4, 1293–1304

    Article  PubMed  CAS  Google Scholar 

  18. Cordwell, S. J., Basseal, D. J., Bjellqvist, B., Shaw, D. C., and Humphery-Smith, I. (1997) Characterisation of basic proteins from Spiroplasma melliferum using novel immobilised pH gradients. Electrophoresis 18, 1393–1398

    Article  PubMed  CAS  Google Scholar 

  19. Görg, A., Boguth, G., Obermaier, C., Posch, A., and Weiss, W. (1995) Two-dimensional polyacrylamide gel electrophoresis with ­immobilized pH gradients in the first dimension (IPG-Dalt): the state of the art and the controversy of vertical versus horizontal systems. Electrophoresis 16, 1079–1086

    Article  PubMed  Google Scholar 

  20. López, J.-L., and Humphery-Smith, I. (2003) New improvements for high-resolution and high-protein load using basic two-dimensional electrophoresis gels. Genome Letts 2, 93–97

    Article  Google Scholar 

  21. Hopkins, A. L., and Groom, C. R. (2002) The druggable genome. Nat Rev Drug Discov 1, 727–730

    Article  PubMed  CAS  Google Scholar 

  22. Kashino, Y. (2003) Separation methods in the analysis of protein membrane complexes. J Chromatogr B Analyt Technol Biomed Life Sci 797, 191–216

    Article  PubMed  CAS  Google Scholar 

  23. Simpson, R. J., Connolly, L. M., Eddes, J. S., Pereira, J. J., Moritz, R. L., and Reid, G. E. (2000) Proteomic analysis of the human colon carcinoma cell line (LIM 1215): development of a membrane protein database. Electrophoresis 21, 1707–1732

    Article  PubMed  CAS  Google Scholar 

  24. Pisareva, T., Shumskaya, M., Maddalo, G., Ilag, L., and Norling, B. (2007) Proteomics of Synechocystis sp. PCC 6803. Identification of novel integral plasma membrane proteins. FEBS J 274, 791–804

    Article  PubMed  CAS  Google Scholar 

  25. Weiner, J. H., and Li, L. (2007) Proteome of the Escherichia coli envelope and technological challenges in membrane proteome analysis. Biochim Biophys Acta 1778, 1698–1713

    Google Scholar 

  26. Braun, R. J., Kinkl, N., Beer, M., and Ueffing, M. (2007) Two-dimensional electrophoresis of membrane proteins. Anal Bioanal Chem 389, 1033–1045

    Article  PubMed  CAS  Google Scholar 

  27. Rais, I., Karas, M., and Schagger, H. (2004) Two-dimensional electrophoresis for the isolation of integral membrane proteins and mass spectrometric identification. Proteomics 4, 2567–2571

    Article  PubMed  CAS  Google Scholar 

  28. Williams, T. I., Combs, J. C., Thakur, A. P., Strobel, H. J., and Lynn, B. C. (2006) A novel Bicine running buffer system for doubled sodium dodecyl sulfate – polyacrylamide gel electrophoresis of membrane proteins. Electrophoresis, 27, 2984–2995

    Article  PubMed  CAS  Google Scholar 

  29. Krause, F. (2006) Detection and analysis of protein-protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis: (membrane) protein complexes and supercomplexes. Electrophoresis 27, 2759–2781

    Article  PubMed  CAS  Google Scholar 

  30. Wittig, I. and Schagger, H. (2005) Advantages and limitations of clear-native PAGE. Proteomics 5, 4338–4346

    Article  PubMed  CAS  Google Scholar 

  31. Wittig, I., Karas, M., and Schagger, H. (2007) High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes. Mol Cell Proteomics 6, 1215–1225

    Article  PubMed  CAS  Google Scholar 

  32. Corthals, G. L., Wasinger, V. C., Hochstrasser, D. F., and Sanchez, J. C. (2000) The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis 21, 1104–1115

    Article  PubMed  CAS  Google Scholar 

  33. Granvogl, B., Ploscher, M., and Eichacker, L. A. (2007) Sample preparation by in-gel digestion for mass spectrometry-based proteomics. Anal Bioanal Chem 389, 991–1002

    Article  PubMed  CAS  Google Scholar 

  34. Karas, M., and Hillenkamp, F. (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60, 2299–2301

    Article  PubMed  CAS  Google Scholar 

  35. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., and Whitehouse, C. M. (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71

    Article  PubMed  CAS  Google Scholar 

  36. Shevchenko, A., Jensen, O. N., Podtelejnikov, A. V., Sagliocco, F. Wilm, M., and Vorm, O. (1996) Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci U S A 93, 14440–14445

    Article  PubMed  CAS  Google Scholar 

  37. James, P., Quadroni, M., Carafoli, E., and Gonnet, G. (1993) Protein identification by mass profile fingerprinting. Biochem Biophys Res Commun 195, 58–64

    Article  PubMed  CAS  Google Scholar 

  38. Henzel, W. J., Billeci, T. M., Stults, J. T., Wong, S. C., Grimley, C., and Watanabe, C. (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci U S A 90, 5011–5015

    Article  PubMed  CAS  Google Scholar 

  39. Yates, J. R., Speicher, S., Griffin, P. R., and Hunkapiller, T. (1993) Peptide mass maps: a highly informative approach to protein identification. Anal Biochem 214, 397–408

    Article  PubMed  CAS  Google Scholar 

  40. Mann, M., and Wilm, M. (1994) Error-­tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem 66, 4390–4399

    Article  PubMed  CAS  Google Scholar 

  41. Yates, J. R., Eng, J. K., McCormack, A. L., and Schieltz, D. (1995) Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem 67, 1426–1436

    Article  PubMed  CAS  Google Scholar 

  42. Rowley, A., Choudhary, J. S., Marzioch, M., Ward, M. A., Weir, M., Solari, R. C., and Blackstock, W. P. (2000) Applications of protein mass spectrometry in cell biology. ­Methods 20, 383–397

    PubMed  CAS  Google Scholar 

  43. Pearson, W. R. (1990) Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol 183, 63–98

    Article  PubMed  CAS  Google Scholar 

  44. Gatlin, C. L., Kleemann, G. R., Hays, L. G., Link, A. J., and Yates, J. R. (1998) Protein identification at the low femtomole level from silver-stained gels using a new fruitless electrospray interface for liquid chromatography-microspray and nanospray mass spectrometry. Anal Biochem 263, 93–101

    Article  PubMed  CAS  Google Scholar 

  45. Frohlich, T., and Arnold, G. J. (2006) Proteome research based on modern liquid chromatography – tandem mass spectrometry: separation, identification and quantification. J Neural Transm 113, 973–994

    Article  PubMed  CAS  Google Scholar 

  46. McDonald, W. H., and Yates, J. R. (2002) Shotgun proteomics and biomarker discovery. Dis Markers 18, 99–105

    PubMed  CAS  Google Scholar 

  47. Washburn, M. P. (2004) Utilisation of proteomics datasets generated via multidimensional protein identification technology (MudPIT). Brief Funct Genomic Proteomic 3, 280–286

    Article  PubMed  CAS  Google Scholar 

  48. Wilkins, M. R., Gasteiger, E., Gooley, A. A., Herbert, B. R., Molloy, M. P., Binz, P. A., et al (1999) High-throughput mass spectrometric discovery of protein post-translational modifications. J Mol Biol 289, 645–657

    Article  PubMed  CAS  Google Scholar 

  49. Mann, M., and Jensen, O. N. (2003) Proteomic analysis of post-translational modifications. Nat Biotechnol 21, 255–261

    Article  PubMed  CAS  Google Scholar 

  50. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17, 994–999

    Article  PubMed  CAS  Google Scholar 

  51. Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3, 1154–1169

    Article  PubMed  CAS  Google Scholar 

  52. Aggarwal, K., Choe, L. H., and Lee, K. H. (2006) Shotgun proteomics using the iTRAQ isobaric tags. Brief Funct Genomic Proteomic 5, 112–120

    Article  PubMed  CAS  Google Scholar 

  53. Johansson, C., Samskog, J., Sundstrom, L., Wadensten, H., Bjorkesten, L., and Flensburg, J. (2006) Differential expression analysis of Escherichia coli proteins using a novel software for relative quantitation of LC-MS/MS data. Proteomics 6, 4475–4485

    Article  PubMed  CAS  Google Scholar 

  54. Silva, J. C., Denny, R., Dorschel, C. A., Gorenstein, M., Kass, I. J., Li, G. Z., et al.(2005) Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem 77, 2187–2200

    Article  PubMed  CAS  Google Scholar 

  55. Silva, J. C., Gorenstein, M. V., Li, G. Z., ­Vissers, J. P., and Geromanos, S. J. (2006) Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics 5, 144–156

    PubMed  CAS  Google Scholar 

  56. Schroder, W. P., and Kieselbach, T. (2003) Update on chloroplast proteomics. Photosynth Res 78, 181–193

    Article  PubMed  Google Scholar 

  57. Ephritikhine, G., Ferro, M., and Rolland, N. (2004) Plant membrane proteomics. Plant Physiol Biochem 42, 943–962

    Article  PubMed  CAS  Google Scholar 

  58. Small, I., Peeters, N., Legeai, F., and Lurin, C. (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4, 1581–1590

    Article  PubMed  CAS  Google Scholar 

  59. Nielsen, H., Engelbrecht, J., Brunak, S., and von Heijne, G. (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10, 1–6

    Article  PubMed  CAS  Google Scholar 

  60. Emanuelsson, O., Nielsen, H., Brunak, S., and von Heijne, G. (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300, 1005–1016

    Article  PubMed  CAS  Google Scholar 

  61. Horton, P., Park, K. J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C. J., and Nakai, K. (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35, W585–W587

    Article  PubMed  Google Scholar 

  62. Pfanner, N. (2000) Protein sorting: recognizing mitochondrial presequences. Curr Biol 10, R412–R415

    Article  PubMed  CAS  Google Scholar 

  63. Bruce, B. D. (2001) The paradox of plastid transit peptides: conservation of function despite divergence in primary structure. ­Biochim Biophys Acta 1541, 2–21

    Article  PubMed  CAS  Google Scholar 

  64. Gomez, S. M., Bil’, K. Y., Aguilera, R., Nishio, J. N., Faull, K. F., and Whitelegge, J. P. (2003) Transit peptide cleavage sites of integral thylakoid membrane proteins. Mol. Cell Proteomics 2, 1068–1085

    Article  PubMed  CAS  Google Scholar 

  65. Westerlund, I., Von Heijne, G., and Emanuelsson, O. (2003) Lumen P - a neural network predictor for protein localization in the thylakoid lumen. Protein Sci 12, 2360–2366

    Article  PubMed  CAS  Google Scholar 

  66. Abdallah, F., Salamini, F., and Leister, D. (2000) A prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis. Trends Plant Sci 5, 141–142

    Article  PubMed  CAS  Google Scholar 

  67. Emanuelsson, O., Nielsen, H., and von ­Heijne, G. (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8, 978–984

    Article  PubMed  CAS  Google Scholar 

  68. Sun, Q., Emanuelsson, O., and van Wijk, K. J. (2004) Analysis of curated and predicted plastid subproteomes of Arabidopsis. Subcellular compartmentalization leads to distinctive proteome properties. Plant Physiol 135, 723–734

    Article  PubMed  CAS  Google Scholar 

  69. Friso, G., Giacomelli, L., Ytterberg, A. J., ­Peltier, J. B., Rudella, A., Sun, Q., and Wijk, K. J. (2004) In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. Plant Cell 16, 478–499

    Article  PubMed  CAS  Google Scholar 

  70. Kleffmann, T., Hirsch-Hoffmann, M., ­Gruissem, W., and Baginsky, S. (2006) plprot: a comprehensive proteome database for different plastid types. Plant Cell Physiol 47, 432–436

    Article  PubMed  CAS  Google Scholar 

  71. Heazlewood, J. L., Tonti-Filippini, J., Verboom, R. E., and Millar, A. H. (2005) Combining experimental and predicted datasets for determination of the subcellular location of proteins in Arabidopsis. Plant Physiol 139, 598–609

    Article  PubMed  CAS  Google Scholar 

  72. Heazlewood, J. L., Verboom, R. E., Tonti-­Filippini, J., Small, I., and Millar, A. H. (2007) SUBA: the Arabidopsis subcellular database. Nucleic Acids Res 35, D213–D218

    Article  PubMed  CAS  Google Scholar 

  73. Granvogl, B., Reisinger, V., and Eichacker, L. A. (2006) Mapping the proteome of thylakoid membranes by de novo sequencing of intermembrane peptide domains. Proteomics 6, 3681–3695

    Article  PubMed  CAS  Google Scholar 

  74. Ytterberg, A. J., Peltier, J. B., and van Wijk, K. J. (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140, 984–997

    Article  PubMed  CAS  Google Scholar 

  75. Aro, E. M., Rokka, A., and Vener, A. V. (2004) Determination of phosphoproteins in higher plant thylakoids. Methods Mol Biol 274, 271–285

    PubMed  CAS  Google Scholar 

  76. Zhou, W., Eudes, F., and Laroche, A. (2006) Identification of differentially regulated proteins in response to a compatible interaction between the pathogen Fusarium graminearum and its host, Triticum aestivum. Proteomics 6, 4599–4609

    Article  PubMed  CAS  Google Scholar 

  77. Rolland, N., Ferro, M., Ephritikhine, G., Marmagne, A., Ramus, C., Brugiere, S., et al (2006) A versatile method for deciphering plant membrane proteomes. J Exp Bot 57, 1579–1589

    Article  Google Scholar 

  78. Steinmetz, L. M., Scharfe, C., Deutschbauer, A. M., Mokranjac, D., Herman, Z. S., Jones, T., et al.(2002) A systematic screen for human disease genes in yeast. Nat Genet 31, 400–404

    PubMed  CAS  Google Scholar 

  79. Prokisch, H., Scharfe, C., Camp, D. G., Xiao, W., David, L., Andreoli, C., et al (2004) Integrative analysis of the mitochondrial proteome in yeast. PLoS Biol 2, e160

    Article  PubMed  Google Scholar 

  80. Gray, M. W., Burger, G., and Lang, B. F. (1999) Mitochondrial evolution. Science 283, 1476–1481

    Article  PubMed  CAS  Google Scholar 

  81. Richly, E., Chinnery, P. F., and Leister, D. (2003) Evolutionary diversification of mitochondrial proteomes: implications for human disease. Trends Genet 19, 356–362

    Article  PubMed  CAS  Google Scholar 

  82. Foury, F., Roganti, T., Lecrenier, N., and ­Purnelle, B. (1998) The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett 440, 325–331

    Article  PubMed  CAS  Google Scholar 

  83. Scharfe, C., Zaccaria, P., Hoertnagel, K., Jaksch, M., Klopstock, T., Dembowski, M., et al (2000) MITOP, the mitochondrial proteome database: update. Nucleic Acids Res 28,155–158

    Article  PubMed  CAS  Google Scholar 

  84. Kumar, A., Agarwal, S., Heyman, J. A., Matson, S., Heidtman, M., Piccirillo, S., et al (2002) Subcellular localization of the yeast proteome. Genes Dev 16, 707–719

    Article  PubMed  CAS  Google Scholar 

  85. Taylor, S. W., Fahy, E., and Ghosh, S. S. (2003) Global organellar proteomics. Trends Biotechnol 21, 82–88

    Article  PubMed  CAS  Google Scholar 

  86. Nakai, K., and Horton, P. (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24, 34–36

    Article  PubMed  CAS  Google Scholar 

  87. Pflieger, D., Le Caer, J. P., Lemaire, C., Bernard, B. A., Dujardin, G., and Rossier, J. (2002) Systematic identification of mitochondrial proteins by LC-MS/MS. Anal Chem 74, 2400–2406

    Article  PubMed  CAS  Google Scholar 

  88. Sickmann, A., Reinders, J., Wagner, Y., ­Joppich, C., Zahedi, R., Meyer, H. E., et al (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 100, 13207–13212

    Article  PubMed  CAS  Google Scholar 

  89. Huh, W. K., Falvo, J. V., Gerke, L. C., ­Carroll, A. S., Howson, R. W., Weissman, J. S., and O’Shea, E. K. (2003) Global analysis of protein localization in budding yeast. Nature 425, 686–691

    Article  PubMed  CAS  Google Scholar 

  90. Millar, A. H., Heazlewood, J. L., Kristensen, B. K., Braun, H. P., and Moller, I. M. (2005) The plant mitochondrial proteome. Trends Plant Sci 10, 36–43

    Article  PubMed  CAS  Google Scholar 

  91. Millar, A. H., Sweetlove, L. J., Giege, P., and Leaver, C. J. (2001) Analysis of the Arabidopsis mitochondrial proteome. Plant Physiol 127, 1711–1727

    Article  PubMed  CAS  Google Scholar 

  92. Kruft, V., Eubel, H., Jansch, L., Werhahn, W., and Braun, H. P. (2001) Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant Physiol 127, 1694–1710

    Article  PubMed  CAS  Google Scholar 

  93. Taylor, S. W., Fahy, E., Zhang, B., Glenn, G. M., Warnock, D. E., Wiley, S., et al (2003) Characterization of the human heart mitochondrial proteome. Nat Biotechnol 21, 281–286

    Article  PubMed  CAS  Google Scholar 

  94. Gaucher, S. P., Taylor, S. W., Fahy, E., Zhang, B., Warnock, D. E., Ghosh, S. S., and Gibson, B. W. (2004) Expanded coverage of the human heart mitochondrial proteome using multidimensional liquid chromatography coupled with tandem mass spectrometry. J Proteome Res 3, 495–505

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Andreas Eichacker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Plöscher, M., Granvogl, B., Reisinger, V., Masanek, A., Eichacker, L. (2009). Organelle Proteomics. In: Tyther, R., Sheehan, D. (eds) Two-Dimensional Electrophoresis Protocols. Methods in Molecular Biology, vol 519. Humana Press. https://doi.org/10.1007/978-1-59745-281-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-281-6_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-937-6

  • Online ISBN: 978-1-59745-281-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics