Advertisement

Characterization of Nonmalignant and Malignant Prostatic Stem/Progenitor Cells by Hoechst Side Population Method

  • Murielle Mimeault
  • Surinder K. Batra
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 568)

Summary

Recent technical progress in the field of cancer stem/progenitor cell research revealed that these malignant cells may provide critical roles for primary tumor growth, metastases at distant tissues and organs, treatment resistance, and disease relapse. The precise molecular oncogenic events that frequently occur in cancer stem/progenitor cells and their early progenies during the early and late stages of cancer progression as well as their contribution to the treatment resistance and disease recurrence remain poorly defined. This lack of information on the deregulated gene products that may be involved in the malignant transformation of tissue-resident adult stem/progenitor cells into highly tumorigenic and/or migrating cancer stem/progenitor cells emphasizes the urgent need to perform future investigations. Toward this direction, we describe in this book chapter the characterization of nonmalignant and malignant prostatic stem/progenitor cells from well-established cell lines by Hoechst side population method. This novel approach should help to establish novel in vitro and in vivo models of human cancer stem/progenitor cell mimicking more closely the genetic and phenotypic changes occurring during the different stages of prostate carcinogenesis and disease progression in clinical settings. Of therapeutic interest, the identification of new biomarkers and molecular targets specific to these prostatic cancer-initiating cells should also help to develop more effective diagnostic and prognostic tests and chemopreventive and therapeutic treatments for the patients diagnosed at early and late stages of disease progression.

Key words

Prostatic stem/progenitor cells prostatic cancer stem/progenitor cells Hoechst side population technique fluorescence-activated cell sorting 

Notes

Acknowledgments

The authors of this manuscript are supported by grants from the U.S. Department of Defense (PC04502) and the National Institutes of Health (CA78590). We thank the Cell Analysis Facility at the University of Nebraska Medical Center for FACS analyses.

References

  1. 1.
    Mimeault, M., Hauke, R., and Batra, S. K. (2007) Stem cells – A revolution in therapeutics – Recent advances on the stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin. Pharmacol. Ther. 82, 252–264.PubMedCrossRefGoogle Scholar
  2. 2.
    Mimeault, M., and Batra, S. K. (2008) Stem cell applications in disease research: Recent advances on stem cell and cancer stem cell biology and their therapeutic implications. In Progress in Stem Cell Applications, eds. Faraday, A. V., and Dyer, J. T., Hauppauge, NY: NOVA Science.Google Scholar
  3. 3.
    Mimeault, M., and Batra, S. K. (2006) Recent advances on multiple tumorigenic cascades involved in prostatic cancer progression and targeting therapies. Carcinogenesis 27, 1–22.PubMedCrossRefGoogle Scholar
  4. 4.
    Mimeault, M., and Batra, S. K. (2006) Recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells 24, 2319–2345.PubMedCrossRefGoogle Scholar
  5. 5.
    Mimeault, M., Mehta, P. P., Hauke, R., and Batra, S. K. (2008) Functions of normal and malignant prostatic stem/progenitor cells in tissue regeneration and cancer progression and novel targeting therapies against advanced prostate cancers. Endocr. Rev. 29, 234–252.PubMedCrossRefGoogle Scholar
  6. 6.
    Mimeault, M., and Batra, S. K. (2008) Recent progress on tissue-resident adult stem cell biology and their therapeutic implications. Stem Cell Rev. 4, 27–49.PubMedCrossRefGoogle Scholar
  7. 7.
    Mimeault, M., and Batra, S. K. (2008) Targeting of cancer stem/progenitor cells plus stem cell-based therapies: An ultimate hope for treating and curing the aggressive and recurrent cancers. Panminerva Med. 50, 3–18.PubMedGoogle Scholar
  8. 8.
    Bapat, S. A., Mali, A. M., Koppikar, C. B., and Kurrey, N. K. (2005) Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res. 65, 3025–3029.PubMedGoogle Scholar
  9. 9.
    Yuan, X., Curtin, J., Xiong, Y., Liu, G., Waschsmann-Hogiu, S., Farkas, D. L., Black, K. L., and Yu, J. S. (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23, 9392–9400.PubMedCrossRefGoogle Scholar
  10. 10.
    Galli, R., Binda, E., Orfanelli, U., Cipelletti, B., Gritti, A., DeV, S., Fiocco, R., Foroni, C., Dimeco, F., and Vescovi, A. (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 64, 7011–7021.PubMedCrossRefGoogle Scholar
  11. 11.
    Liu, G., Yuan, X., Zeng, Z., Tunici, P., Ng, H., AbdulkadirI, R., Lu, L., Irvin, D., Black, K. L., and Yu, J. S. (2006) Analysis of gene expression and chemoresistance of CD133 + cancer stem cells in glioblastoma. Mol. Cancer 5, 67.PubMedCrossRefGoogle Scholar
  12. 12.
    Bao, S., Wu, Q., McLendon, R. E., Hao, Y., Shi, Q., Hjelmeland, A. B., Dewhirst, M. W., Bigner, D. D., and Rich, J. N. (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760.PubMedCrossRefGoogle Scholar
  13. 13.
    Haraguchi, N., Utsunomiya, T., Inoue, H., Tanaka, F., Mimori, K., Barnard, G. F., and Mori, M. (2006) Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells 24, 506–513.PubMedCrossRefGoogle Scholar
  14. 14.
    Mimeault, M., Hauke, R., and Batra, S. K. (2007) Recent advances on the molecular mechanisms involved in drug-resistance of cancer cells and novel targeting therapies. Clin. Pharmacol. Ther. 83, 673–691.PubMedCrossRefGoogle Scholar
  15. 15.
    Mimeault, M., Hauke, R., Mehta, P. P., and Batra, S. K. (2007) Recent advances on cancer stem/progenitor cell research: Therapeutic implications for overcoming resistance to the most aggressive cancers. J. Mol. Cell. Med. 11, 981–1011.CrossRefGoogle Scholar
  16. 16.
    Mimeault, M., and Batra, S. K. (2007) Interplay of distinct growth factors during epithelial-mesenchymal transition of cancer progenitor cells and molecular targeting as novel cancer therapies. Ann. Oncol. 18, 1605–1619.PubMedCrossRefGoogle Scholar
  17. 17.
    Mimeault, M., and Batra, S. K. (2007) Functions of tumorigenic and migrating cancer progenitor cells in cancer progression and metastasis and their therapeutic implications. Cancer Metastasis Rev. 26, 203–214.PubMedCrossRefGoogle Scholar
  18. 18.
    Hermann, P. C., Huber, S. L., Herrler, T., Aicher, A., Ellwart, J. W., Guba, M., Bruns, C. J., and Heeschen, C. (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem cell. 1, 313–323.PubMedCrossRefGoogle Scholar
  19. 19.
    Mimeault, M., and Batra, S. K. (2008) Critical roles of tumorigenic and migrating cancer stem/progenitor cells in cancer progression and their therapeutic implications. In Stem Cells and Cancer, eds. Bagley, R. G., and Teicher, B. A., Totowa, NJ: HUMANA.Google Scholar
  20. 20.
    Chen, B. Y., Liu, J. Y., Chang, H. H., Chang, C. P., Lo, W. Y., Kuo, W. H., Yang, C. R., and Lin, D. P. (2007) Hedgehog is involved in prostate basal cell hyperplasia formation and its progressing towards tumorige-nesis. Biochem. Biophys. Res. Commun. 357, 1084–1089.PubMedCrossRefGoogle Scholar
  21. 21.
    Dean, M., Fojo, T., and Bates, S. (2005) Tumour stem cells and drug resistance. Nat. Rev. Cancer 5, 275–284.PubMedCrossRefGoogle Scholar
  22. 22.
    Wulf, G. G., Wang, R. Y., Kuehnle, I., Weidner, D., Marini, F., Brenner, M. K., Andreeff, M., and Goodell, M. A. (2001) A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood 98, 1166–1173.PubMedCrossRefGoogle Scholar
  23. 23.
    Hope, K. J., Jin, L., and Dick, J. E. (2004) Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat. Immunol. 5, 738–743.PubMedCrossRefGoogle Scholar
  24. 24.
    Hemmati, H. D., Nakano, I., Lazareff, J. A. Masterman-Smith, M., Geschwind, D. H., Bronner-Fraser, M., and Kornblum, H. I. (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl. Acad. Sci. U.S.A. 100, 15178–15183.PubMedCrossRefGoogle Scholar
  25. 25.
    Singh, S. K., Hawkins, C., ClarkeI, D., Squire, J. A., Bayani, J., Hide, T., Henkelman, R. M., Cusimano, M. D., and Dirks, P. B. (2004) Identification of human brain tumour initiating cells. Nature 432, 396–401.PubMedCrossRefGoogle Scholar
  26. 26.
    Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., and Clarke, M. F. (2003) Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. U.S.A. 100 3983–3988.PubMedCrossRefGoogle Scholar
  27. 27.
    Ponti, D., Costa, A., Zaffaroni, N., Pratesi, G., Petrangolini, G., Coradini, D., Pilotti, S., Pierotti, M. A., and Daidone, M. G. (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 65, 5506–5511.PubMedCrossRefGoogle Scholar
  28. 28.
    Patrawala, L., Calhoun, T., Schneider-Broussard, R., Li, H., Bhatia, B., Tang, S., Reilly, J. G., Chandra, D., Zhou, J., Claypool, K., Coghlan, L., and Tang, D. G. (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25, 1696–1708.PubMedCrossRefGoogle Scholar
  29. 29.
    Patrawala, L., Calhoun-Davis, T., Schneider-Broussard, R., and Tang, D. G. (2007) Hierarchical organization of prostate cancer cells in xenograft tumors: The CD44+ {alpha}2{beta}1+ cell population is enriched in tumor-initiating cells. Cancer Res. 67, 6796–6805.PubMedCrossRefGoogle Scholar
  30. 30.
    Tang, D. G., Patrawala, L., Calhoun, T., Bhatia, B., Choy, G., Schneider-Broussard, R., and Jeter, C. (2007) Prostate cancer stem/progenitor cells: Identification, characterization, and implications. Mol. Carcinog. 46, 1–14.PubMedCrossRefGoogle Scholar
  31. 31.
    Li, C., Heidt, D. G., Dalerba, P., Burant, C. F., Zhang, L., Adsay, V., Wicha, M., Clarke, M. F., and Simeone, D. M. (2007) Identification of pancreatic cancer stem cells. Cancer Res 67, 1030–1037.PubMedCrossRefGoogle Scholar
  32. 32.
    Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., and De, M. R. (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111–115.PubMedCrossRefGoogle Scholar
  33. 33.
    Hadnagy, A., Gaboury, L., Beaulieu, R., and Balicki, D. (2006) SP analysis may be used to identify cancer stem cell populations. Exp. Cell Res. 312, 3701–3710.PubMedCrossRefGoogle Scholar
  34. 34.
    Grichnik, J. M., Burch, J. A., Schulteis, R. D., Shan, S., Liu, J., Darrow, T. L., Vervaert, C. E., and Seigler, H. F. (2006) Melanoma, a tumor based on a mutant stem cell?. J. Invest. Dermatol. 126, 142–153.PubMedCrossRefGoogle Scholar
  35. 35.
    Hirschmann-Jax, C., Foster, A. E., Wulf, G. G., Nuchtern, J. G., Jax, T. W., Gobel, U., Goodell, M. A., and Brenner, M. K. (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc. Natl. Acad. Sci. U.S.A. 101, 14228–14233.PubMedCrossRefGoogle Scholar
  36. 36.
    Ho, M. M., Ng, A. V., Lam, S., and Hung, J. Y. (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res. 67, 4827–4833.PubMedCrossRefGoogle Scholar
  37. 37.
    Brown, M. D., Gilmore, P. E., Hart, C. A., Samuel, J. D., Ramani V., A., George, N. J., and Clarke, N. W. (2007) Characterization of benign and malignant prostate epithelial Hoechst 33342 side populations. Prostate 67, 1384–1396.PubMedCrossRefGoogle Scholar
  38. 38.
    Friel, A. M., Sergent, P. A., Patnaude, C., Szotek, P. P., Oliva, E., Scadden, D. T., Seiden, M. V., Foster, R., and Rueda, B. R. (2008) Functional analyses of the cancer stem cell-like properties of human endometrial tumor initiating cells. Cell Cycle 7, 242–249.PubMedCrossRefGoogle Scholar
  39. 39.
    Kondo, T., Setoguchi, T., and Taga, T. (2004) Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc. Natl. Acad. Sci. U.S.A. 101, 781–786.PubMedCrossRefGoogle Scholar
  40. 40.
    Prince, M. E., Sivanandan, R., Kaczorowski, A., Wolf, G. T., Kaplan, M. J., Dalerba, P., WeissmanI., L., Clarke, M. F., and Ailles, L. E. (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl. Acad. Sci. U.S.A. 104, 973–978.PubMedCrossRefGoogle Scholar
  41. 41.
    Fang, D., Nguyen, T. K., Leishear, K., Finko, R., Kulp, A. N., Hotz, S., Van Belle, P. A., Xu, X., Elder, D. E., and Herlyn, M. (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 65, 9328–9337.PubMedCrossRefGoogle Scholar
  42. 42.
    Eramo, A., Lotti, F., Sette, G., Pilozzi, E., Biffoni, M., DiV., A., Conticello, C., Ruco, L., Peschle, C., and De Maria, R. (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death. Differ. 15, 504–514.PubMedCrossRefGoogle Scholar
  43. 43.
    Yang, Z. F., Ho, D. W., Ng, M. N., Lau, C. K., Yu, W. C., Ngai, P., Chu, P. W., Lam, C. T., Poon, R. T., and Fan, S. T. (2008) Significance of CD90(+) cancer stem cells in human liver cancer. Cancer Cell 13, 153–166.PubMedCrossRefGoogle Scholar
  44. 44.
    Maitland, N. J., Bryce, S. D., Stower, M. J., and Collins, A. T. (2006) Prostate cancer stem cells: A target for new therapies. Ernst Schering Found. Symp. Proc. 5, 155–179.Google Scholar
  45. 45.
    Komuro, H., Saihara, R., Shinya, M., Takita, J., Kaneko, S., Kaneko, M., and Hayashi, Y. (2007) Identification of side population cells (stem-like cell population) in pediatric solid tumor cell lines. J. Pediatr. Surg. 42, 2040–2045.PubMedCrossRefGoogle Scholar
  46. 46.
    Szotek, P. P., Pieretti-Vanmarcke, R., Masiakos, P. T., Dinulescu, D. M., Connolly, D., Foster, R., Dombkowski, D., Preffer, F., Maclaughlin, D. T., and Donahoe, P. K. (2006) Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian inhibiting substance responsiveness. Proc. Natl. Acad. Sci. U.S.A. 103, 11154–11159.PubMedCrossRefGoogle Scholar
  47. 47.
    Wei, C., Guomin, W., Yujun, L., and Ruizhe, Q. (2007) Cancer stem-like cells in human prostate carcinoma cells DU145: The seeds of the cell line?. Cancer Biol. Ther. 6, 763–768.PubMedCrossRefGoogle Scholar
  48. 48.
    Goodell, M. A., Brose, K., Paradis, G., Conner, A. S., and Mulligan, R. C. (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183, 1797–1806.PubMedCrossRefGoogle Scholar
  49. 49.
    Haraguchi, N., Inoue, H., Tanaka, F., Mimori, K., Utsunomiya, T., Sasaki, A., and Mori, M. (2006) Cancer stem cells in human gastrointestinal cancers. Hum. Cell 19, 24–29.PubMedCrossRefGoogle Scholar
  50. 50.
    de Jonge-Peeters, S. D., Kuipers, F., de Vries, E. G., and Vellenga, E. (2007) ABC transporter expression in hematopoietic stem cells and the role in AML drug resistance. Crit. Rev. Oncol. Hematol. 62, 214–226.PubMedCrossRefGoogle Scholar
  51. 51.
    Goodell, M. A., Rosenzweig, M., Kim, H., Marks, D. F., DeMaria, M., Paradis, G., Grupp, S. A., Sieff, C. A., Mulligan, R. C., and Johnson, R. P. (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat. Med. 3, 1337–1345.PubMedCrossRefGoogle Scholar
  52. 52.
    Scharenberg, C. W., Harkey, M. A., and Torok-Storb, B. (2002) The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 99, 507–512.PubMedCrossRefGoogle Scholar
  53. 53.
    Seigel, G. M., Campbell, L. M., Narayan, M., and Gonzalez-Fernandez, F. (2005) Cancer stem cell characteristics in retinoblastoma. Mol. Vis. 11, 729–737.PubMedGoogle Scholar
  54. 54.
    Chen, J. S., Pardo, F. S., Wang-Rodriguez, J., Chu, T. S., Lopez, J. P., Aguilera, J., Altuna, X., Weisman, R. A., and Ongkeko, W. M. (2006) EGFR regulates the side population in head and neck squamous cell carcinoma. Laryngoscope 116: 401–406.PubMedCrossRefGoogle Scholar
  55. 55.
    Chiba, T., Kita, K., Zheng, Y. W., Yokosuka, O., Saisho, H., Iwama, A., Nakauchi, H., and Tani-guchi, H. (2006) Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology 44, 240–251.PubMedCrossRefGoogle Scholar
  56. 56.
    Zhou, J., Zhang, H., Gu, P., Bai, J., Margolick, J. B., and Zhang, Y. (2007) NF-kappaB pathway inhibitors preferentially inhibit breast cancer stem-like cells. Breast Cancer Res. Treat. 111, 419–427.PubMedCrossRefGoogle Scholar
  57. 57.
    Christgen, M., Ballmaier, M., Bruchhardt, H., von, W. R., Kreipe, H., and Lehmann, U. (2007) Identification of a distinct side population of cancer cells in the Cal-51 human breast carcinoma cell line. Mol. Cell. Biochem. 306, 201–212.PubMedCrossRefGoogle Scholar
  58. 58.
    Weijerman, P. C., Konig, J. J., Wong, S. T., Niesters, H. G., and Peehl, D. M. (1994) Lipofection-mediated immortalization of human prostatic epithelial cells of normal and malignant origin using human papillomavirus type 18 DNA. Cancer Res. 54, 5579–5583.PubMedGoogle Scholar
  59. 59.
    Bello, D., Webber, M. M., Kleinman, H. K., Wartinger, D. D., and Rhim, J. S. (1997) Androgen responsive adult human prostatic epithelial cell lines immortalized by human papilloma-virus 18. Carcinogenesis 18, 1215–1223.PubMedCrossRefGoogle Scholar
  60. 60.
    Webber, M. M., Bello, D., Kleinman, H. K., and Hoffman, M. P. (1997) Acinar differentiation by non-malignant immortalized human prostatic epithelial cells and its loss by malignant cells. Carcinogenesis 18, 1225–1231.PubMedCrossRefGoogle Scholar
  61. 61.
    Mickey, D. D., Stone, K. R., Wunderli, H., Mickey, G. H., Vollmer, R. T., and Paulson, D. F. (1977) Heterotransplantation of a human prostatic adenocarcinoma cell line in nude mice. Cancer Res. 37, 4049–4058.PubMedGoogle Scholar
  62. 62.
    Kaighn, M. E., Narayan, K. S., Ohnuki, Y., Lechner, J. F., and Jones, L. W. (1079) Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest. Urol. 17, 16–23.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Murielle Mimeault
    • 1
  • Surinder K. Batra
    • 1
  1. 1.Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations