Advertisement

Neurosphere Culture and Human Organotypic Model to Evaluate Brain Tumor Stem Cells

  • Hugo Guerrero-Cázares
  • Kaisorn L. Chaichana
  • Alfredo Quiñones-Hinojosa
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 568)

Summary

The brain tumor stem cell (BTSC) hypothesis is based on the premise that there is a subpopulation of cells within tumors with tumorigenic and pluripotent properties. BTSC are believed to be responsible for both the initiation of brain tumors and their resistance to current therapeutic modalities. This new paradigm stresses the need for adequate techniques to culture and characterize this special population of cells. Furthermore, the use of different cell migration assays offers the possibility to evaluate the processes involved in glioma metastasis. In this chapter, we summarize a method to culture, analyze the cellular characteristics, and study the invasion of BTSCs using a neurosphere assay, cryostat sectioning, and human organotypic brain cortex migration assay, respectively.

Key words

Brain tumor stem cells Neurospheres Human organotypic cultures GBM Cell migration 

Notes

Acknowledgments

The authors would like to thank Ms. Alyssa Choi for her contri-butions to the neurosphere-staining technique and Mr. Frank Attenello and Ms. Grettel Zamora-Berridi for their help with the organotypic culture injections. This work was supported by NIH K08NS055851, Children’s Cancer Foundation, and the American Society of Clinical Oncology.

References

  1. 1.
    Demuth, T., J. L. Rennert, D. B. Hoelzinger, L. B. Reavie, M. Nakada, C. Beaudry, S. Nakada, E. M. Anderson, A. N. Henrichs, W. S. McDonough, D. Holz, A. Joy, R. Lin, K. H. Pan, C. J. Lih, S. N. Cohen, and M. E. Berens. 2008. Glioma cells on the run - the migratory transcriptome of 10 human glioma cell lines. BMC Genomics 9: 54.PubMedCrossRefGoogle Scholar
  2. 2.
    Filippini, G., C. Falcone, A. Boiardi, G. Broggi, M. G. Bruzzone, D. Caldiroli, R. Farina, M. Farinotti, L. Fariselli, G. Finocchiaro, S. Giombini, B. Pollo, M. Savoiardo, C. L. Solero, and M. G. Valsecchi. 2008. Prognostic factors for survival in 676 consecutive patients with newly diagnosed primary glioblastoma. Neuro Oncol.10:79–87PubMedCrossRefGoogle Scholar
  3. 3.
    McFerrin, M. B., and H. Sontheimer. 2006. A role for ion channels in glioma cell invasion. Neuron Glia Biol 2: 39–49.PubMedCrossRefGoogle Scholar
  4. 4.
    Hemmati, H. D., I. Nakano, J. A. Lazareff, M. Masterman-Smith, D. H. Geschwind, M. Bronner-Fraser, and H. I. Kornblum. 2003. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100: 15178–83.PubMedCrossRefGoogle Scholar
  5. 5.
    Singh, S. K., I. D. Clarke, T. Hide, and P. B. Dirks. 2004. Cancer stem cells in nervous system tumors. Oncogene 23: 7267–73.PubMedCrossRefGoogle Scholar
  6. 6.
    Singh, S. K., C. Hawkins, I. D. Clarke, J. A. Squire, J. Bayani, T. Hide, R. M. Henkelman, M. D. Cusimano, and P. B. Dirks. 2004. Identification of human brain tumour initia-ting cells. Nature 432: 396–401.PubMedCrossRefGoogle Scholar
  7. 7.
    Ignatova, T. N., V. G. Kukekov, E. D. Laywell, O. N. Suslov, F. D. Vrionis, and D. A. Steindler. 2002. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39: 193–206.PubMedCrossRefGoogle Scholar
  8. 8.
    Singh, S. K., I. D. Clarke, M. Terasaki, V. E. Bonn, C. Hawkins, J. Squire, and P. B. Dirks. 2003. Identification of a cancer stem cell in human brain tumors. Cancer Res 63: 5821–8.PubMedGoogle Scholar
  9. 9.
    Bar, E. E., A. Chaudhry, A. Lin, X. Fan, K. Schreck, W. Matsui, S. Piccirillo, A. L. Vescovi, F. DiMeco, A. Olivi, and C. G. Eberhart. 2007. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25: 2524–33.PubMedCrossRefGoogle Scholar
  10. 10.
    Galli, R., E. Binda, U. Orfanelli, B. Cipelletti, A. Gritti, S. De Vitis, R. Fiocco, C. Foroni, F. Dimeco, and A. Vescovi. 2004. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64: 7011–21.PubMedCrossRefGoogle Scholar
  11. 11.
    Lee, J., S. Kotliarova, Y. Kotliarov, A. Li, Q. Su, N. M. Donin, S. Pastorino, B. W. Purow, N. Christopher, W. Zhang, J. K. Park, and H. A. Fine. 2006. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9: 391–403.PubMedCrossRefGoogle Scholar
  12. 12.
    Lee, L. M., E. A. Seftor, G. Bonde, R. A. Cornell, and M. J. Hendrix. 2005. The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev Dyn 233: 1560–70.PubMedCrossRefGoogle Scholar
  13. 13.
    Taylor, M. D., H. Poppleton, C. Fuller, X. Su, Y. Liu, P. Jensen, S. Magdaleno, J. Dalton, C. Calabrese, J. Board, T. Macdonald, J. Rutka, A. Guha, A. Gajjar, T. Curran, and R. J. Gilbertson. 2005. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8: 323–35.PubMedCrossRefGoogle Scholar
  14. 14.
    Quinones-Hinojosa, A., and K. Chaichana. 2007. The human subventricular zone: a source of new cells and a potential source of brain tumors. Exp Neurol 205: 313–24.PubMedCrossRefGoogle Scholar
  15. 15.
    Singec, I., R. Knoth, R. P. Meyer, J. Maciaczyk, B. Volk, G. Nikkhah, M. Frotscher, and E. Y. Snyder. 2006. Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology. Nat Methods 3: 801–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Chaichana, K., G. Zamora-Berridi, J. Camara-Quintana, and A. Quinones-Hinojosa. 2006. Neurosphere Assays: Growth Factors and Hormone Differences in Tumor and Non-tumor Studies. Stem Cells.Google Scholar
  17. 17.
    Gritti, A., R. Galli, and A. L. Vescovi. 2008. Clonal analyses and cryopreservation of neural stem cell cultures. Methods Mol Biol 438: 173–84.PubMedCrossRefGoogle Scholar
  18. 18.
    Reynolds, B. A., and S. Weiss. 1992. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255: 1707–10.PubMedCrossRefGoogle Scholar
  19. 19.
    Parmar, M., A. Sjoberg, A. Bjorklund, and Z. Kokaia. 2003. Phenotypic and molecular identity of cells in the adult subventricular zone. in vivo and after expansion in vitro. Mol Cell Neurosci 24: 741–52.PubMedCrossRefGoogle Scholar
  20. 20.
    Nobes, C. D., and A. Hall. 1999. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol 144: 1235–44.PubMedCrossRefGoogle Scholar
  21. 21.
    McDonough, W., N. Tran, A. Giese, S. A. Norman, and M. E. Berens. 1998. Altered gene expression in human astrocytoma cells selected for migration: I. Thromboxane synthase. J Neuropathol Exp Neurol 57: 449–55.PubMedCrossRefGoogle Scholar
  22. 22.
    Wichterle, H., M. Alvarez-Dolado, L. Erskine, and A. Alvarez-Buylla. 2003. Permissive corridor and diffusible gradients direct medial ganglionic eminence cell migration to the neocortex. Proc Natl Acad Sci U S A 100: 727–32.PubMedCrossRefGoogle Scholar
  23. 23.
    Albini, A., Y. Iwamoto, H. K. Kleinman, G. R. Martin, S. A. Aaronson, J. M. Kozlowski, and R. N. McEwan. 1987. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 47: 3239–45.PubMedGoogle Scholar
  24. 24.
    Iwasaki, K., L. R. Rogers, G. H. Barnett, M. L. Estes, and B. P. Barna. 1993. Effect of recombinant tumor necrosis factor-alpha on three-dimensional growth, morphology, and invasiveness of human glioblastoma cells in vitro. J Neurosurg 78: 952–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Ohnishi, T., H. Matsumura, S. Izumoto, S. Hiraga, and T. Hayakawa. 1998. A novel model of glioma cell invasion using organotypic brain slice culture. Cancer Res 58: 2935–40.PubMedGoogle Scholar
  26. 26.
    Valster, A., N. L. Tran, M. Nakada, M. E. Berens, A. Y. Chan, and M. Symons. 2005. Cell migration and invasion assays. Methods 37: 208–15.PubMedCrossRefGoogle Scholar
  27. 27.
    Chaichana, K. L., V. Capilla-Gonzalez, O. Gonzalez-Perez, G. Pradilla, J. Han, A. Olivi, H. Brem, J. M. Garcia-Verdugo, and A. Quinones-Hinojosa. 2007. Preservation of glial cytoarchitecture from ex vivo human tumor and non-tumor cerebral cortical explants: A human model to study neurological diseases. J Neurosci Methods 164: 261–70.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hugo Guerrero-Cázares
    • 1
  • Kaisorn L. Chaichana
    • 1
  • Alfredo Quiñones-Hinojosa
    • 1
  1. 1.Brain Tumor Stem Cell Laboratory, Department of NeurosurgeryJohns Hopkins School of MedicineBaltimoreUSA

Personalised recommendations