Prospective Identification of Cancer Stem Cells with the Surface Antigen CD133

  • Kyeung Min Joo
  • Do-Hyun Nam
Part of the Methods in Molecular Biology book series (MIMB, volume 568)


Cancer cells do not share equal tumor-initiating potential. Only cancer stem cells (CSCs) can initiate cancer, which is important clinically because they should be eradicated to treat cancer patients. The purpose of experimental methods for identification of CSC is to isolate CSCs among various kinds of cancer cells in cancer masses. To identify CSCs, cancer masses derived from patients should be dissociated into single cells. Dissociated cells are classified into several groups according to expression status of one or several surface proteins using magnetic cell sorting (MACS) or fluorescence-activated cell sorting (FACS) methods. Sorted cells are cultured in a specialized culture medium for stem cells or inoculated into the primary cancer site of immunodeficient mice. In this chapter detailed experimental methods will be described and glioblastoma will be used as an example of solid cancers.

Key words

Cancer stem cell Marker Glioblastoma Dissociation methods Primary culture MACS FACS Animal model 


  1. 1.
    Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., Henkelman, R. M., Cusimano, M. D., and Dirks, P. B. (2004) Identification of human brain tumour initiating cells. Nature. 432, 396–401.PubMedCrossRefGoogle Scholar
  2. 2.
    Singh, S. K., Clarke, I. D., Terasaki, M., Bonn, V. E., Hawkins, C., Squire, J., and Dirks, P. B. (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828.PubMedGoogle Scholar
  3. 3.
    Piccirillo, S. G., Reynolds, B. A., Zanetti, N., Lamorte, G., Binda, E., Broggi, G., Brem, H., Olivi, A., Dimeco, F., and Vescovi, A. L. (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour initiating cells. Nature. 444, 761–765.PubMedCrossRefGoogle Scholar
  4. 4.
    Stupp, R. and Hegi, M. E. (2007) Targeting brain-tumor stem cells. Nat. Biotechnol. 25, 193–194.PubMedCrossRefGoogle Scholar
  5. 5.
    Bao, S., Wu, Q., McLendon, R. E., Hao, Y., Shi, Q., Hjelmeland, A. B., Dewhirst, M. W., Bigner, D. D., and Rich, J. N. (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 444, 756–760.PubMedCrossRefGoogle Scholar
  6. 6.
    Dean, M., Fojo, T., and Bates, S. (2005) Tumour stem cells and drug resistance. Nat. Rev. Cancer. 5, 275–284.PubMedCrossRefGoogle Scholar
  7. 7.
    Lee, J., Kotliarova, S., Kotliarov, Y., Li, A., Su, Q., Donin, N. M., Pastorino, S., Purow, B. W., Christopher, N., Zhang, W., Park, J. K., and Fine, H. A. (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 9, 391–403.PubMedCrossRefGoogle Scholar
  8. 8.
    Rietze, R. L., Valcanis, H., Brooker, G. F., Thomas, T., Voss, A. K., and Bartlett, P. F. (2001) Purification of a pluripotent neural stem cell from the adult mouse brain. Nature. 412, 736–739.PubMedCrossRefGoogle Scholar
  9. 9.
    Nunes, M. C., Roy, N. S., Keyoung, H. M., Goodman, R. R., McKhann, G., 2nd, Jiang, L., Kang, J., Nedergaard, M., and Goldman, S. A. (2003) Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat. Med. 9, 439–447.PubMedCrossRefGoogle Scholar
  10. 10.
    Bonnet, D. and Dick, J. E. (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737.PubMedCrossRefGoogle Scholar
  11. 11.
    Matsui, W., Huff, C. A., Wang, Q., Malehorn, M. T., Barber, J., Tanhehco, Y., Smith, B. D., Civin, C. I., and Jones, R. J. (2004) Characterization of clonogenic multiple myeloma cells. Blood. 103, 2332–2336.PubMedCrossRefGoogle Scholar
  12. 12.
    Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., and Clarke, M. F. (2003) Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. U. S. A. 100, 3983–3988.PubMedCrossRefGoogle Scholar
  13. 13.
    O’Brien, C. A., Pollett, A., Gallinger, S., and Dick, J. E. (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 445, 106–110.PubMedCrossRefGoogle Scholar
  14. 14.
    Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., and De Maria, R. (2007) Identification and expansion of human colon-cancer-initiating cells. Nature. 445, 111–115.PubMedCrossRefGoogle Scholar
  15. 15.
    Schatton, T., Murphy, G. F., Frank, N. Y., Yamaura, K., Waaga-Gasser, A. M., Gasser, M., Zhan, Q., Jordan, S., Duncan, L. M., Weishaupt, C., Fuhlbrigge, R. C., Kupper, T. S., Sayegh, M. H., and Frank, M. H. (2008) Identification of cells initiating human melanomas. Nature. 451, 345–349.PubMedCrossRefGoogle Scholar
  16. 16.
    Vescovi, A. L., Galli, R., and Reynolds, B. A. (2006) Brain tumour stem cells. Nat. Rev. Cancer. 6, 425–436.PubMedCrossRefGoogle Scholar
  17. 17.
    Sanai, N., Alvarez-Buylla, A., and Berger, M. S. (2005) Neural stem cells and the origin of gliomas. N. Engl. J. Med. 353, 811–822.PubMedCrossRefGoogle Scholar
  18. 18.
    Zborowski, M. and Chalmers, J. J. (eds.) (2007) Magnetic Cell Separation. Elsevier, Amsterdam, The Netherlands.Google Scholar
  19. 19.
    Macey, M. G. (ed.) (2007) Flow Cytometry and Cell Sorting. Humana, Totowa, NJ.Google Scholar
  20. 20.
    Fidler, I. J. (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer. 3, 453–458.PubMedCrossRefGoogle Scholar
  21. 21.
    Panchision, D. M., Chen, H. L., Pistollato, F., Papini, D., Ni, H. T., and Hawley, T. S. (2007) Optimized flow cytometric analysis of central nervous system tissue reveals novel functional relationships among cells expressing CD133, CD15, and CD24. Stem Cells. 25, 1560–1570.PubMedCrossRefGoogle Scholar
  22. 22.
    Schmid, I., Uittenbogaart, C. H., Krall, W. J., Braun, J., and Giorgi, J. V. (1992) Dead cell discrimination with 7-amio-actinomycin D in combination with dual color immunofluorescence in single laser flow cytometry. Cytometry. 13, 204–208.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kyeung Min Joo
    • 1
  • Do-Hyun Nam
    • 1
  1. 1.Department of Neurosurgery, Samsung Medical Center, Cancer Stem Cell Research CenterSungkyunkwan University School of MedicineSeoulKorea

Personalised recommendations