Analysis of Cancer Stem Cell Metastasis in Xenograft Animal Models

  • Yibin Kang
Part of the Methods in Molecular Biology book series (MIMB, volume 568)


Metastatic spread of cancer cells from the primary tumors to distant vital organs, such as lung, liver, brain, and bone, is responsible for the majority of cancer-related deaths. Cancer stem cells are likely to play essential roles in the metastatic spread of primary tumors because of their self-renewal capability and their potential to give rise to differentiated progenies that can adapt to different target organ microenvironments. Investigating the metastatic behavior of cancer stem cells (CSCs) is critical for the development of more effective therapies to prevent or delay the progression of malignant diseases. Animal models have been developed to mimic the multistep process of metastasis to various target organs. In this chapter, I will describe several xenograft methods to introduce human breast cancer cells into nude mice in order to generate spontaneous and experimental metastases. Similar experimental approach can be applied to analyze the metastatic behavior of CSCs derived from other tumor types.

Key words

Metastasis Xenograft Mammary fat pad injection Intravenous injection Intracardiac injection Animal model In vivo imaging 



I thank members of my laboratory for the critical reading of this manuscript and Dr. Teresa Guise for her advice in various xenograft techniques. Research in our laboratory is supported by American Cancer Society (RSG MGO-110765), Department of Defense (BC051647), Susan G. Komen Foundation (BCTR0503765), and the NJ Commission on Cancer Research (05-2408-CCR-E0).


  1. 1.
    Gupta, G. P., and Massague, J. (2006) Cancer metastasis: building a framework, Cell 127, 679–95.PubMedCrossRefGoogle Scholar
  2. 2.
    Kang, Y. (2005) Functional genomic analysis of cancer metastasis: biologic insights and clinical implications, Expert Rev Mol Diagn 5, 385–95.PubMedCrossRefGoogle Scholar
  3. 3.
    Steeg, P. S. (2006) Tumor metastasis: mechanistic insights and clinical challenges, Nat Med 12, 895–904.PubMedCrossRefGoogle Scholar
  4. 4.
    Chambers, A. F., Groom, A. C., and MacDonald, I. C. (2002) Dissemination and growth of cancer cells in metastatic sites, Nat Rev Cancer 2, 563–72.PubMedCrossRefGoogle Scholar
  5. 5.
    Fidler, I. J. (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited, Nat Rev Cancer 3, 453–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Li, F., Tiede, B., Massague, J., and Kang, Y. (2007) Beyond tumorigenesis: cancer stem cells in metastasis, Cell Res 17, 3–14.PubMedCrossRefGoogle Scholar
  7. 7.
    Khanna, C., and Hunter, K. (2004) Mode-ling metastasis in vivo, Carcinogenesis 25, 2285–2292.CrossRefGoogle Scholar
  8. 8.
    Welch, D. R. (1997) Technical considerations for studying cancer metastasis in vivo, Clin Exp Metastasis 15, 272–306.PubMedCrossRefGoogle Scholar
  9. 9.
    Khanna, C., Khan, J., Nguyen, P., Prehn, J., Caylor, J., Yeung, C., Trepel, J., Meltzer, P., and Helman, L. (2001) Metastasis-associated differences in gene expression in a murine model of osteosarcoma, Cancer Res 61, 3750–9.PubMedGoogle Scholar
  10. 10.
    Minn, A. J., Gupta, G. P., Siegel, P. M., Bos, P. D., Shu, W., Giri, D. D., Viale, A., Olshen, A. B., Gerald, W. L., and Massague, J. (2005) Genes that mediate breast cancer metastasis to lung, Nature 436, 518–24.PubMedCrossRefGoogle Scholar
  11. 11.
    Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., Guise, T. A., and Massague, J. (2003) A multigenic program mediating breast cancer metastasis to bone, Cancer Cell 3, 537–49.PubMedCrossRefGoogle Scholar
  12. 12.
    Kang, Y., He, W., Tulley, S., Gupta, G. P., Serganova, I., Chen, C. R., Manova-Todorova, K., Blasberg, R., Gerald, W. L., and Massague, J. (2005) Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway, Proc Natl Acad Sci U S A 102, 13909–14.PubMedCrossRefGoogle Scholar
  13. 13.
    Yin, J. J. (1999) Osteoblastic bone metastases: tumor-produced endothelin-1 mediates new bone formation via the endothelin A receptor, J Back Musculoskeletal Rehabil 14, F400.Google Scholar
  14. 14.
    Gross, S., and Piwnica-Worms, D. (2005) Spying on cancer: molecular imaging in vivo with genetically encoded reporters, Cancer Cell 7, 5–15.PubMedGoogle Scholar
  15. 15.
    Weissleder, R. (2002) Scaling down imaging: molecular mapping of cancer in mice, Nat Rev Cancer 2, 11–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Contag, P. R., Olomu, I. N., Stevenson, D. K., and Contag, C. H. (1998) Bioluminescent indicators in living mammals, Nat Med 4, 245–7.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yibin Kang
    • 1
  1. 1.Department of Molecular BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations