Advertisement

The Contribution of Niche-Derived Factors to the Regulation of Cancer Cells

  • Julie B. Sneddon
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 568)

Summary

In normal adult tissues, paracrine signals that derive from the stem cell niche, or microenvironment, play an important role in regulating the critical balance between activity and quiescence of stem cells. Similarly, evidence has emerged to support the hypothesis that signals derived from the microenvironment regulate cancer cells in an analogous manner. We recently reported that in basal cell carcinoma of the skin and in diverse other solid tumors, fibroblasts that comprise the tumor cell niche are, indeed, molecularly distinct from those that comprise the normal stroma. In particular, we found evidence suggesting that expression of secreted BMP antagonists by tumor-associated stromal cells may promote self-renewal of tumor stem cells in vivo. This chapter describes methods for identifying and evaluating the molecular signals that derive from fibroblasts in human tumors.

Key words

Tumor stroma Tumor fibroblast Cancer cell niche 

Notes

Acknowledgments

The author thanks Aaron D. Tward for assistance in preparing figures, Kelli Montgomery for aid with in situ hybridization protocol development, and Patrick O. Brown in whose laboratory all of this work was performed.

References

  1. 1.
    Moore, K. A. & Lemischka, I. R. (2006) Stem cells and their niches. Science 311, 1880–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Fuchs, E., Tumbar, T. & Guasch, G. (2004) Socializing with the neighbors: stem cells and their niche. Cell 116, 769–78.PubMedCrossRefGoogle Scholar
  3. 3.
    Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100, 3983–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M. A. & Dick, J. E. (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., Henkelman, R. M., Cusimano, M. D. & Dirks, P. B. (2004) Identification of human brain tumour initiating cells. Nature 432, 396–401.PubMedCrossRefGoogle Scholar
  6. 6.
    Sipkins, D. A., Wei, X., Wu, J. W., Runnels, J. M., Cote, D., Means, T. K., Luster, A. D., Scadden, D. T. & Lin, C. P. (2005) In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435, 969–73.PubMedCrossRefGoogle Scholar
  7. 7.
    Calabrese, C., Poppleton, H., Kocak, M., Hogg, T. L., Fuller, C., Hamner, B., Oh, E. Y., Gaber, M. W., Finklestein, D., Allen, M., Frank, A., Bayazitov, I. T., Zakharenko, S. S., Gajjar, A., Davidoff, A. & Gilbertson, R. J. (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11, 69–82.PubMedCrossRefGoogle Scholar
  8. 8.
    De Toni, F., Racaud-Sultan, C., Chicanne, G., Mas, V. M., Cariven, C., Mesange, F., Salles, J. P., Demur, C., Allouche, M., Payrastre, B., Manenti, S. & Ysebaert, L. (2006) A crosstalk between the Wnt and the adhesion-dependent signaling pathways governs the chemosensitivity of acute myeloid leukemia. Oncogene 25, 3113–22.PubMedCrossRefGoogle Scholar
  9. 9.
    Sneddon, J. B., Zhen, H. H., Montgomery, K., van de Rijn, M., Tward, A. D., West, R., Gladstone, H., Chang, H. Y., Morganroth, G. S., Oro, A. E. & Brown, P. O. (2006) Bone morphogenetic protein antagonist gremlin 1 is widely expressed by cancer-associated stromal cells and can promote tumor cell proliferation. Proc Natl Acad Sci U S A 103, 14842–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Iacobuzio-Donahue, C. A., Ryu, B., Hruban, R. H. & Kern, S. E. (2002) Exploring the host desmoplastic response to pancreatic carcinoma: gene expression of stromal and neoplastic cells at the site of primary invasion. Am J Pathol 160, 91–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Grando, S. A., Schofield, O. M., Skubitz, A. P., Kist, D. A., Zelickson, B. D. & Zachary, C. B. (1996) Nodular basal cell carcinoma in vivo vs in vitro. Establishment of pure cell cultures, cytomorphologic characteristics, ultrastructure, immunophenotype, biosynthetic activities, and generation of antisera. Arch Dermatol 132, 1185–93.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Julie B. Sneddon
    • 1
  1. 1.Howard Hughes Medical InstituteHarvard UniversityCambridgeUSA

Personalised recommendations