Skip to main content

Assay for the Adenovirus Proteinase

Purification of the Enzyme and Synthesis of a Fluorogenic Substrate

  • Protocol
Adenovirus Methods and Protocols

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 131))

Abstract

Human adenovirus proteinase (AVP), the first member of a new class of cysteine proteinases, is required for the synthesis of infectious virus. As such, it is an attractive target for proteinase inhibitors that act as antiviral agents. However, before potential inhibitors can be screened, a quick, sensitive, and quantitative assay for the enzyme is required. Here, methods for purification of a recombinant AVP expressed in Escherichia coli are presented and a fluorogenic substrate is designed, synthesized, and purified and then used in the development of a quick, sensitive, and quantitative assay for the enzyme. The reporting group in the substrate is Rhodamine 110, possibly the most detectable compound known. The substrate contains the proteinase consensus cleavage sequence (Leu-Arg-Gly-Gly). The synthesis and purification of (Leu-Arg-Gly-Gly-NH)2-Rhodamine is described. It is then used to develop assays with AVP and its various cofactors. The resultant assays are quite sensitive; enzyme activity at low nanomolar concentrations can readily be detected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weber, J. (1976) Genetic analysis of adenovirus type 2 III. Temperaturesensitivity of processing of viral proteins. J. Virol. 17, 462ā€“471.

    CASĀ  PubMedĀ  Google ScholarĀ 

  2. Hannan, C., Raptis, L. H., Dery, C. V., and Weber, J. (1983) Biological and structural studies with adenovirus type 2 temperature-sensitive mutant defective for uncoating. Intervirology 19, 213ā€“223.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Mirza, A. and Weber, J. (1980) Infectivity and uncoating of adenovirus cores. Intervirology 13, 307ā€“311.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Brown, M. T., McGrath, W. J., Toledo, D. L., and Mangel, W. F. (1996) Different modes of inhibition of human adenovirus proteinase, probably a cysteine proteinase, by bovine pancreatic trypsin inhibitor. FEBS Lett. 388, 233ā€“237.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Greber, U. F., Webster, P., Weber, J., and Helenius, A. (1996) The role of the adenovirus protease in virus entry into cells. EMBO J. 15, 1766ā€“1777.

    CASĀ  PubMedĀ  Google ScholarĀ 

  6. Cotten, M. and Weber, J. M. (1995) The adenovirus proteinase is required for entry into host cells. Virology 213, 494ā€“502.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Greber, U. F. (1998) Virus assembly and disassembly: the adenovirus cysteine protease as a trigger factor. Rev. Med. Virol. 8, 213ā€“222.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Chen, P. H., Ornelles, D.A., and Shenk, T. (1993) The adenovirus L3 23-kilodalton proteinase cleaves the amino-terminal head domain from cytokeratin 18 and disrupts the cytokeratin network of HeLa cells. J. Virol. 67, 3507ā€“3514.

    CASĀ  PubMedĀ  Google ScholarĀ 

  9. Brown, M. T., McBride, K. M., Baniecki, M. L., Reich, N. C., Marriott, G., and Mangel, W.F. (2002) Actin can act as a cofactor for a viral proteinase in the cleavage of the cytoskeleton. J. Biol. Chem. 277, 46,298ā€“46,303.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Yeh-Kai, L., Akusjarvi, G., Alestrom, P., Pettersson, U., Tremblay, M., and Weber, J. (1983) Genetic identification of an endopeptidase encoded by the adenovirus genome. J. Mol. Biol. 167, 217ā€“222.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Mangel, W. F., McGrath, W. J., Toledo, D.L., and Anderson, C. W. (1993) Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity. Nature 361, 274ā€“275.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Tihanyi, K., Bourbonniere, M., Houde, A., Rancourt, C., and Weber, J. M. (1993) Isolation and properties of adenovirus type 2 proteinase. J. Biol. Chem. 268, 1780ā€“1785.

    CASĀ  PubMedĀ  Google ScholarĀ 

  13. Anderson, C. W. (1993) Expression and purification of the adenovirus proteinase polypeptide and of a synthetic proteinase substrate. Protein Express. Purif. 4, 8ā€“15.

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Webster, A., Hay, R.T., and Kemp, G. (1993) The adenovirus protease is activated by a virus-coded disulphide-linked peptide. Cell 72, 97ā€“104.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Webster, A. and Kemp, G. (1993) The active adenovirus protease is the intact L3 23K protein. J. Gen. Virol. 74, 1415ā€“1420.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Mangel, W. F., Toledo, D. L., Brown, M. T., Martin, J.H., and McGrath, W. J. (1996) Characterization of three components of human adenovirus proteinase activity in vitro. J. Biol. Chem. 271, 536ā€“543.

    CASĀ  Google ScholarĀ 

  17. McGrath, W. J., Baniecki, M. L., Li, C., et al. (2001) Human adenovirus proteinase: DNA binding and stimulation of proteinase activity by DNA. Biochemistry 40, 13,237ā€“13,245.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Brown, M.T. and Mangel, W. F. (2004) Interaction of actin and its 11-aminoacid C-terminal peptide as cofactors with the adenovirus proteinase. FEBS 563, 213ā€“218.

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Webster, A., Russell, S., Talbot, P., Russell, W.C., and Kemp, G. D. (1989) Characterization of the adenovirus proteinase: substrate specificity. J. Gen. Virol. 70, 3225ā€“3234.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Leytus, S. P., Melhado, L.L., and Mangel, W. F. (1983) Rhodamine-based compounds as fluorogenic substrates for serine proteases. Biochem. J. 209, 299ā€“307.

    CASĀ  PubMedĀ  Google ScholarĀ 

  21. Mangel, W. F., Leytus, S.P., and Melhado, L. L. (1987) Novel Rhodamine derivatives as fluorogenic substrates. U.S. Patent 4,640,893 (February 1987).

    Google ScholarĀ 

  22. Mangel, W. F., Leytus, S.P., and Melhado, L. L. (1985) Rhodamine derivatives as fluorogenic substrates forproteinases. U.S. Patent 4,557,862 (December 1985).

    Google ScholarĀ 

  23. Leytus, S. P., Patterson, W.L., and Mangel, W. F. (1983) New class of sensitive, specific, and selective substrates for serine proteinases: fluorogenic, amino acid peptide derivatives of Rhodamine. Biochem. J. 215, 253ā€“260.

    CASĀ  PubMedĀ  Google ScholarĀ 

  24. Leytus, S. P., Toledo, D.L., and Mangel, W. F. (1984) Theory and experimental method for determining individual kinetic constants for fast-acting, irreversible, protease inhibitors. Biochim. Biophys. Acta 788, 74ā€“86.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. McGrath, W. J., Abola, A. P., Toledo, D. L., Brown, M.T., and Mangel, W. F. (1996) Characterization of human adenovirus proteinase activity in disrupted virus particles. Virology 217, 131ā€“138.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Baniecki, M. L., McGrath, W. J., McWhirter, S. M., et al. (2001) Interaction of the human adenovirus proteinase with its eleven amino-acid cofactor pVIc. Biochemistry 40, 12,349ā€“12,356.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  27. Gill, S.G. and von Hippel, P. H. (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319ā€“326.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Bajpayee, N. S., McGrath, W.J., and Mangel, W. F. (2005) Interaction of the adenovirus proteinase with protein cofactors with high negative charge densities. Biochemistry 44, 8721ā€“8729.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. McGrath, W. J., Ding, J., Sweet, R.M., and Mangel, W. F. (1996) Preparation and crystallization of a complex between human adenovirus serotype 2 proteinase and its 11-amino-acid cofactor pVIc. J. Struct. Biol. 117, 77ā€“79.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2007 Humana Press Inc, Totowa, NJ

About this protocol

Cite this protocol

Mangel, W.F., McGrath, W.J. (2007). Assay for the Adenovirus Proteinase. In: Wold, W.S.M., Tollefson, A.E. (eds) Adenovirus Methods and Protocols. Methods in Molecular Medicineā„¢, vol 131. Humana Press. https://doi.org/10.1007/978-1-59745-277-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-277-9_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-901-7

  • Online ISBN: 978-1-59745-277-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics