Skip to main content

Trees from Trees: Construction of Phylogenetic Supertrees Using Clann

  • Protocol
  • First Online:
Bioinformatics for DNA Sequence Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 537))

Abstract

Supertree methods combine multiple phylogenetic trees to produce the overall best “supertree.” They can be used to combine phylogenetic information from datasets only partially overlapping and from disparate sources (like molecular and morphological data), or to break down problems thought to be computationally intractable. Some of the longest standing phylogenetic conundrums are now being brought to light using supertree approaches. We describe the most widely used supertree methods implemented in the software program “clann” and provide a step by step tutorial for investigating phylogenetic information and reconstructing the best supertree. Clann is freely available for Windows, Mac and Unix/Linux operating systems under the GNU public licence at http://bioinf.nuim.ie/software/clann.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aho, A. V., Sagiv, Y., Szymanski, T. G., and Ullman, J. D. (1981) Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM J Comput 10, 405–21.

    Article  Google Scholar 

  2. Gordon, A. D. (1986) Consensus supertrees: the synthesis of rooted trees containing overlapping sets of laballed leaves. J Classification 3, 335–48.

    Article  Google Scholar 

  3. Wilkinson, M., Cotton, J. A., Creevey, C., Eulenstein, O., Harris, S. R., Lapointe, F. J., Levasseur, C., McInerney, J. O., Pisani, D., and Thorley, J. L. (2005) The shape of supertrees to come: tree shape related properties of fourteen supertree methods. Syst Biol 54, 419–31.

    Article  PubMed  Google Scholar 

  4. Liu, F. G., Miyamoto, M. M., Freire, N. P., Ong, P. Q., Tennant, M. R., Young, T. S., and Gugel, K. F. (2001) Molecular and morphological supertrees for eutherian (placental) mammals. Science 291, 1786–9.

    Article  PubMed  CAS  Google Scholar 

  5. Beck, R. M., Bininda-Emonds, O. R., Cardillo, M., Liu, F. G., and Purvis, A. (2006) A higher-level MRP supertree of placental mammals. BMC Evol Biol 6, 93.

    Article  PubMed  Google Scholar 

  6. Dagan, T., and Martin, W. (2006) The tree of one percent. Genome Biol 7, 118.

    Article  PubMed  Google Scholar 

  7. Creevey, C. J., Fitzpatrick, D. A., Philip, G. K., Kinsella, R. J., O’Connell, M. J., Pentony, M. M., Travers, S. A., Wilkinson, M., and McInerney, J. O. (2004) Does a tree-like phylogeny only exist at the tips in the prokaryotes? Proc R Soc Lond B Biol Sci 271, 2551–8.

    Article  CAS  Google Scholar 

  8. McInerney, J. O., and Wilkinson, M. (2005) New methods ring changes for the tree of life. Trends Ecol Evol 20, 105–7.

    Article  PubMed  Google Scholar 

  9. Pollard, D. A., Iyer, V. N., Moses, A. M., and Eisen, M. B. (2006) Widespread discordance of gene trees with species tree in Drosophila: evidence for incomplete lineage sorting. PLoS Genet 2, e173.

    Article  PubMed  Google Scholar 

  10. Doolittle, W. F. (1999) Lateral genomics. Trends Cell Biol 9, M5–8.

    Article  PubMed  CAS  Google Scholar 

  11. Jain, R., Rivera, M. C., and Lake, J. A. (1999) Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci USA 96, 3801–6.

    Article  PubMed  CAS  Google Scholar 

  12. Garcia-Vallve, S., Romeu, A., and Palau, J. (2000) Horizontal gene transfer in bacterial and archaeal complete genomes. Genome Res 10, 1719–25.

    Article  PubMed  CAS  Google Scholar 

  13. Brown, J. R., Douady, C. J., Italia, M. J., Marshall, W. E., and Stanhope, M. J. (2001) Universal trees based on large combined protein sequence data sets. Nat Genet 28, 281–5.

    Article  PubMed  CAS  Google Scholar 

  14. Kim, J., and Salisbury, B. A. (2001) A tree obscured by vines: horizontal gene transfer and the median tree method of estimating species phylogeny. Pac Symp Biocomput, 571–82.

    Google Scholar 

  15. Dutta, C., and Pan, A. (2002) Horizontal gene transfer and bacterial diversity. J Biosci 27, 27–33.

    Article  PubMed  Google Scholar 

  16. Dagan, T., and Martin, W. (2007) Ancestral genome sizes specify the minimum rate of lateral gene transfer during prokaryote evolution. Proc Natl Acad Sci USA 104, 870–5.

    Article  PubMed  CAS  Google Scholar 

  17. Woese, C. R. (2002) On the evolution of cells. Proc Natl Acad Sci USA 99, 8742–7.

    Article  PubMed  CAS  Google Scholar 

  18. Doolittle, W. F. (1998) A paradigm gets shifty. Nature 392, 15–6.

    Article  PubMed  CAS  Google Scholar 

  19. Pisani, D., Cotton, J. A., and McInerney, J. O. (2007) Supertrees disentangle the chimerical origin of eukaryotic genomes. Mol Biol Evol 24, 1752–60.

    Article  PubMed  CAS  Google Scholar 

  20. Hendy, M. D., and Penny, D. (1989) A framework for the quantitative study of evolutionary trees. Syst Zool 38, 297–309.

    Article  Google Scholar 

  21. Foster, P. G., and Hickey, D. A. (1999) Compositional bias may affect both DNA-based and protein-based phylogenetic reconstructions. J Mol Evol 48, 284–90.

    Article  PubMed  CAS  Google Scholar 

  22. Keane, T. M., Creevey, C. J., Pentony, M. M., Naughton, T. J., and McLnerney, J. O. (2006) Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol 6, 29.

    Article  PubMed  Google Scholar 

  23. Rokas, A., Williams, B. L., King, N., and Carroll, S. B. (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425, 798–804.

    Article  PubMed  CAS  Google Scholar 

  24. Ciccarelli, F. D., Doerks, T., von Mering, C., Creevey, C. J., Snel, B., and Bork, P. (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–7.

    Article  PubMed  CAS  Google Scholar 

  25. Philippe, H., Snell, E. A., Bapteste, E., Lopez, P., Holland, P. W., and Casane, D. (2004) Phylogenomics of eukaryotes: impact of missing data on large alignments. Mol Biol Evol 21, 1740–52.

    Article  PubMed  CAS  Google Scholar 

  26. Tekaia, F., Lazcano, A., and Dujon, B. (1999) The genomic tree as revealed from whole proteome comparisons. Genome Res 9, 550–7.

    PubMed  CAS  Google Scholar 

  27. Snel, B., Huynen, M. A., and Dutilh, B. E. (2005) Genome trees and the nature of genome evolution. Annu Rev Microbiol 59, 191–209.

    Google Scholar 

  28. Huson, D. H., and Steel, M. (2004) Phylogenetic trees based on gene content. Bioinformatics 20, 2044–9.

    Article  PubMed  CAS  Google Scholar 

  29. Hahn, M. W., De Bie, T., Stajich, J. E., Nguyen, C., and Cristianini, N. (2005) Estimating the tempo and mode of gene family evolution from comparative genomic data. Genome Res 15, 1153–60.

    Article  PubMed  CAS  Google Scholar 

  30. Novozhilov, A. S., Karev, G. P., and Koonin, E. V. (2005) Mathematical modeling of evolution of horizontally transferred genes. Mol Biol Evol 22, 1721–32.

    Article  PubMed  CAS  Google Scholar 

  31. Lake, J. A., and Rivera, M. C. (2004) Deriving the genomic tree of life in the presence of horizontal gene transfer: conditioned reconstruction. Mol Biol Evol 21, 681–90.

    Article  PubMed  CAS  Google Scholar 

  32. Baum, B. R. (1992) Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41, 3–10.

    Article  Google Scholar 

  33. Ragan, M. A. (1992) Matrix representation in reconstructing phylogenetic- relationships among the eukaryotes. Biosystems 28, 47–55.

    Article  PubMed  CAS  Google Scholar 

  34. Lapointe, F.-J., and Cucumel, G. (1997) The average consensus procedure: combination of weighted trees containing identical or overlapping sets of taxa. Syst Biol 46, 306–12.

    Article  Google Scholar 

  35. Lapointe, F. J., and Levasseur, C. (2004) Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life (Bininda-Emonds, O. R. P., Ed.), Vol. 4, Kluwer Academic, Dordrecht.

    Google Scholar 

  36. Saitou, N., and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–25.

    PubMed  CAS  Google Scholar 

  37. Creevey, C. J., and McInerney, J. O. (2005) Clann: investigating phylogenetic information through supertree analyses. Bioinformatics 21, 390–2.

    Article  PubMed  CAS  Google Scholar 

  38. Swofford, D. L. (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4, Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  39. Maddison, D. R., Swofford, D. L., and Maddison, W. P. (1997) Nexus: an extensible file format for systematic information. Syst Biol 46, 590–621.

    Article  PubMed  CAS  Google Scholar 

  40. Page, R. D. M. (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–8.

    PubMed  CAS  Google Scholar 

  41. Letunic, I., and Bork, P. (2007) Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Creevey, C.J., McInerney, J.O. (2009). Trees from Trees: Construction of Phylogenetic Supertrees Using Clann. In: Posada, D. (eds) Bioinformatics for DNA Sequence Analysis. Methods in Molecular Biology, vol 537. Humana Press. https://doi.org/10.1007/978-1-59745-251-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-251-9_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-910-9

  • Online ISBN: 978-1-59745-251-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics