Skip to main content

Molecular Control of Mammalian Myoblast Fusion

  • Protocol
Cell Fusion

Summary

The fusion of postmitotic mononucleated myoblasts to form syncytial myofibers is a critical step in the formation of skeletal muscle. Myoblast fusion occurs both during development and throughout adulthood, as skeletal muscle growth and regeneration require the accumulation of additional nuclei within myofibers. Myoblasts must undergo a complex series of molecular and morphological changes prior to fusing with one another. Although many molecules regulating myoblast fusion have been identified, the precise mechanism by which these molecules act in concert to control fusion remains to be elucidated. A comprehensive understanding of how myo-blast fusion is controlled may contribute to the treatment of various disorders associated with loss of muscle mass. In this chapter, we examine progress made toward elucidating the cellular and molecular pathways involved in mammalian myoblast fusion. Special emphasis is placed on the molecules that regulate myofiber formation without discernibly affecting biochemical differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andres, V. and Walsh, K. (1996) Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. J. Cell Biol. 132(4), 657–566.

    Article  CAS  PubMed  Google Scholar 

  2. Capers, C. R. (1960) Multinucleation of skeletal muscle in vitro. J. Biophys. Biochem. Cytol. 7, 559–566.

    Article  CAS  PubMed  Google Scholar 

  3. Konigsberg, I. R. (1961) Some aspects of myogenesis in vitro. Circulation 24, 447–457.

    CAS  PubMed  Google Scholar 

  4. Konigsberg, I. R., McElvain, N., Tootle, M., and Herrmann, H. (1960) The dissociability of deoxyribonucleic acid synthesis from the development of multinuclearity of muscle cells in culture. J. Biophys. Biochem. Cytol. 8, 333–343.

    Article  CAS  PubMed  Google Scholar 

  5. Stockdale, F. E. and Holtzer, H. (1961) DNA synthesis and myogenesis. Exp. Cell Res. 24, 508–520.

    Article  CAS  PubMed  Google Scholar 

  6. Menon, S. D. and Chia, W. (2001) Drosophila rolling pebbles: a multidomain protein required for myoblast fusion that recruits D-titin in response to the myoblast attractant Dumbfounded. Dev. Cell 1(5), 691–703.

    Article  CAS  PubMed  Google Scholar 

  7. Rau, A., Buttgereit, D., Holz, A., et al. (2001) rolling pebbles (rols) is required in Drosophila muscle precursors for recruitment of myoblasts for fusion. Development 128(24), 5061–5073.

    CAS  PubMed  Google Scholar 

  8. Powell, J. A. (1973) Development of normal and genetically dystrophic mouse muscle in tissue culture. I. Prefusion and fusion activities of muscle cells: phase contrast and time lapse study. Exp. Cell Res. 80(2), 251–264.

    Article  CAS  PubMed  Google Scholar 

  9. Chazaud, B., Christov, C., Gherardi, R. K., and Barlovatz-Meimon, G. (1998) In vitro evaluation of human muscle satellite cell migration prior to fusion into myo-tubes. J. Muscle Res. Cell Motil. 19(8), 931–936.

    Article  CAS  PubMed  Google Scholar 

  10. Knudsen, K. A. and Horwitz, A. F. (1977) Tandem events in myoblast fusion. Dev. Biol. 58(2), 328–338.

    Article  CAS  PubMed  Google Scholar 

  11. Wakelam, M. J. (1985) The fusion of myoblasts. Biochem. J. 228(1), 1–12.

    CAS  PubMed  Google Scholar 

  12. Kalderon, N. and Gilula, N. B. (1979) Membrane events involved in myoblast fusion. J. Cell Biol. 81(2), 411–425.

    Article  CAS  PubMed  Google Scholar 

  13. Robertson, T. A., Grounds, M. D., Mitchell, C. A., and Papadimitriou, J. M. (1990) Fusion between myogenic cells in vivo: an ultrastructural study in regenerating murine skeletal muscle. J. Struct. Biol. 105(1–3), 170–182.

    Article  CAS  PubMed  Google Scholar 

  14. Fulton, A. B., Prives, J., Farmer, S. R., and Penman, S. (1981) Developmental reorganization of the skeletal framework and its surface lamina in fusing muscle cells. J. Cell Biol. 91(1), 103–112.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, M. and McLennan, I. S. (1995) During secondary myotube formation, primary myotubes preferentially absorb new nuclei at their ends. Dev. Dyn. 204(2), 168–177.

    CAS  PubMed  Google Scholar 

  16. Kitiyakara, A. and Angevine, D. M. (1963) Further studies on regeneration and growth in length of striated voluntary muscle with isotopes P32 and thymidine-H3. Nippon Byori Gakkai Kaishi 52, 180–183.

    CAS  PubMed  Google Scholar 

  17. Aziz, U. and Goldspink, G. (1974) Distribution of mitotic nuclei in the biceps brachii of the mouse during post-natal growth. Anat. Rec. 179(1), 115–118.

    Article  Google Scholar 

  18. Zeschnigk, M., Kozian, D., Kuch, C., Schmoll, M., and Starzinski-Powitz, A. (1995) Involvement of M-cadherin in terminal differentiation of skeletal muscle cells. J. Cell Sci. 108(Pt 9), 2973–2981.

    CAS  PubMed  Google Scholar 

  19. Mege, R. M., Goudou, D., Diaz, C., et al. (1992) N-cadherin and N-CAM in myo-blast fusion: compared localisation and effect of blockade by peptides and antibodies. J. Cell Sci. 103(Pt 4), 897–906.

    CAS  PubMed  Google Scholar 

  20. Charrasse, S., Comunale, F., Grumbach, Y., Poulat, F., Blangy, A., and Gauthier-Rouviere, C. (2006) RhoA GTPase regulates M-cadherin activity and myoblast fusion. Mol. Biol. Cell 17(2), 749–759.

    Article  CAS  PubMed  Google Scholar 

  21. Charrasse, S., Comunale, F., Fortier, M., Portales-Casamar, E., Debant, A., and Gauthier-Rouviere. C. (2007) M-cadherin activates Rac1 GTPase through the Rho-GEF trio during myoblast fusion. Mol. Biol. Cell 18(5), 1734 –1743.

    Article  CAS  PubMed  Google Scholar 

  22. Hollnagel, A., Grund, C., Franke, W. W., and Arnold, H. H. (2002) The cell adhesion molecule M-cadherin is not essential for muscle development and regeneration. Mol. Cell. Biol. 22(13), 4760–4770.

    Article  CAS  PubMed  Google Scholar 

  23. Knudsen, K. A., McElwee, S. A., and Myers, L. (1990) A role for the neural cell adhesion molecule, NCAM, in myoblast interaction during myogenesis. Dev. Biol. 138(1), 159–168.

    Article  CAS  PubMed  Google Scholar 

  24. Dickson, G., Peck, D., Moore, S. E., Barton, C.H., and Walsh, F. S. (1990) Enhanced myogenesis in NCAM-transfected mouse myoblasts. Nature 344(6264), 348–351.

    Article  CAS  PubMed  Google Scholar 

  25. Charlton, C. A., Mohler, W. A., and Blau, H. M. (2000) Neural cell adhesion molecule (NCAM) and myoblast fusion. Dev. Biol. 221(1), 112–119.

    Article  CAS  PubMed  Google Scholar 

  26. Menko, A. S. and Boettiger, D. (1987) Occupation of the extracellular matrix receptor, integrin, is a control point for myogenic differentiation. Cell 51(1), 51–57.

    Article  CAS  PubMed  Google Scholar 

  27. Schwander, M., Leu, M., and Stumm, M., et al. (2003) Beta1 integrins regulate myoblast fusion and sarcomere assembly. Dev. Cell. 4(5), 673–685.

    Article  CAS  PubMed  Google Scholar 

  28. Rosen, G. D., Sanes, J. R., LaChance, R., Cunningham, J. M., Roman, J., and Dean, D. C. (1992) Roles for the integrin VLA-4 and its counter receptor VCAM-1 in myogenesis. Cell 69(7), 1107–1119.

    Article  CAS  PubMed  Google Scholar 

  29. Yang, J. T., Rando, T. A., Mohler, W. A., Rayburn, H., Blau, H. M., and Hynes, R. O. (1996) Genetic analysis of alpha 4 integrin functions in the development of mouse skeletal muscle. J. Cell Biol. 135(3), 829–835.

    Article  CAS  PubMed  Google Scholar 

  30. Tachibana, I. and Hemler, M. E. (1999) Role of transmembrane 4 superfamily (TM4SF) proteins CD9 and CD81 in muscle cell fusion and myotube maintenance. J. Cell Biol. 146(4), 893–904.

    Article  CAS  PubMed  Google Scholar 

  31. Kaji, K., Oda, S., Miyazaki, S., and Kudo, A. (2002) Infertility of CD9-deficient mouse eggs is reversed by mouse CD9, human CD9, or mouse CD81; polyadenylated mRNA injection developed for molecular analysis of sperm–egg fusion. Dev. Biol. 247(2), 327–334.

    Article  CAS  PubMed  Google Scholar 

  32. Takeda, Y., Tachibana, I., Miyado, K., et al. (2003) Tetraspanins CD9 and CD81 function to prevent the fusion of mononuclear phagocytes. J. Cell Biol. 161(5), 945–956.

    Article  CAS  PubMed  Google Scholar 

  33. Rubinstein, E., Ziyyat, A., Prenant, M., et al. (2006) Reduced fertility of female mice lacking CD81. Dev. Biol. 290(2), 351–358.

    Article  CAS  PubMed  Google Scholar 

  34. Seebacher, T., Manske, M., Zoller, J., Crabb, J., and Bade, E. G. (1992) The EGF-inducible protein EIP-1 of migrating normal and malignant rat liver epithelial cells is identical to plasminogen activator inhibitor 1 and is a component of the ECM migration tracks. Exp. Cell Res. 203(2), 504–507.

    Article  CAS  PubMed  Google Scholar 

  35. Wei, Y., Waltz, D. A., Rao, N., Drummond, R. J., Rosenberg, S., and Chapman, H. A. (1994) Identification of the urokinase receptor as an adhesion receptor for vitronectin. J. Biol. Chem. 269(51), 32380–32388.

    CAS  PubMed  Google Scholar 

  36. Wang, N., Planus, E., Pouchelet, M., Fredberg, J. J., and Barlovatz-Meimon, G. (1995) Urokinase receptor mediates mechanical force transfer across the cell surface. Am. J. Physiol. 268(4 Pt 1), C1062–C1066.

    CAS  PubMed  Google Scholar 

  37. Quax, P. H., Frisdal, E., Pedersen, N., et al. (1992) Modulation of activities and RNA level of the components of the plasminogen activation system during fusion of human myogenic satellite cells in vitro. Dev. Biol. 151(1), 166–175.

    Article  CAS  PubMed  Google Scholar 

  38. Bonavaud, S., Charriere-Bertrand, C., Rey, C., et al. (1997) Evidence of a non-conventional role for the urokinase tripartite complex (uPAR/uPA/PAI-1) in myogenic cell fusion. J. Cell Sci. 110(Pt 9), 1083–1089.

    CAS  PubMed  Google Scholar 

  39. Chazaud, B., Bonavaud, S., Plonquet, A., Pouchelet, M., Gherardi, R. K., and Barlovatz-Meimon, G. (2000) Involvement of the [uPAR:uPA:PAI-1:LRP] complex in human myogenic cell motility. Exp. Cell Res. 258(2), 237–244.

    Article  CAS  PubMed  Google Scholar 

  40. Gorza, L. and Vitadello, M. (2000) Reduced amount of the glucose-regulated protein GRP94 in skeletal myoblasts results in loss of fusion competence. FASEB J. 14(3), 461–475.

    CAS  PubMed  Google Scholar 

  41. Galbiati, F., Volonte, D., Engelman, J. A., Scherer, P. E., and Lisanti, M. P. (1999) Targeted down-regulation of caveolin-3 is sufficient to inhibit myotube formation in differentiating C2C12 myoblasts. Transient activation of p38 mitogen-activated protein kinase is required for induction of caveolin-3 expression and subsequent myotube formation. J. Biol. Chem. 274(42), 30315–30321.

    Article  CAS  PubMed  Google Scholar 

  42. Doherty, K. R., Cave, A., Davis, D. B., et al. (2005) Normal myoblast fusion requires myoferlin. Development 132(24), 5565–5575.

    Article  CAS  PubMed  Google Scholar 

  43. Entwistle, A., Zalin, R. J., Warner, A. E., and Bevan, S. (1988) A role for acetylcholine receptors in the fusion of chick myoblasts. J. Cell Biol. 106(5), 1703–1712.

    Article  CAS  PubMed  Google Scholar 

  44. Krause, R. M., Hamann, M., Bader, C. R., Liu, J. H., Baroffio, A., and Bernheim, L. (1995) Activation of nicotinic acetylcholine receptors increases the rate of fusion of cultured human myoblasts. J. Physiol. 489(Pt 3), 779–790.

    CAS  PubMed  Google Scholar 

  45. Bois, P. R. and Grosveld, G. C. (2003) FKHR (FOXO1a) is required for myotube fusion of primary mouse myoblasts. EMBO J. 22(5), 1147–1157.

    Article  CAS  PubMed  Google Scholar 

  46. Nishiyama, T., Kii, I., and Kudo, A. (2004) Inactivation of Rho/ROCK signaling is crucial for the nuclear accumulation of FKHR and myoblast fusion. J. Biol. Chem. 279(45), 47311–47319.

    Article  CAS  PubMed  Google Scholar 

  47. Bois, P. R., Brochard, V. F., Salin-Cantegrel, A. V., Cleveland, J. L., and Grosveld, G. C. (2005) FoxO1a-cyclic GMP-dependent kinase I interactions orchestrate myo-blast fusion. Mol. Cell. Biol. 25(17), 7645–7656.

    Article  CAS  PubMed  Google Scholar 

  48. Furuyama, T., Kitayama, K., Shimoda, Y., et al. (2004) Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice. J. Biol. Chem. 279(33), 34741–34749.

    Article  CAS  PubMed  Google Scholar 

  49. Kamei, Y., Miura, S., Suzuki, M., et al. (2004) Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J. Biol. Chem. 279(39), 41114–41123.

    Article  CAS  PubMed  Google Scholar 

  50. Cuenda, A. and Cohen, P. (1999) Stress-activated protein kinase-2/p38 and a rapamycin-sensitive pathway are required for C2C12 myogenesis. J. Biol. Chem. 274(7), 4341–4346.

    Article  CAS  PubMed  Google Scholar 

  51. Park, I. H. and Chen, J. (2005) Mammalian target of rapamycin (mTOR) signaling is required for a late-stage fusion process during skeletal myotube maturation. J. Biol. Chem. 280(36), 32009–32017.

    Article  CAS  PubMed  Google Scholar 

  52. Glading, A., Bodnar, R. J., Reynolds, I. J., et al. (2004) Epidermal growth factor activates m-calpain (calpain II), at least in part, by extracellular signal-regulated kinase-mediated phosphorylation. Mol. Cell. Biol. 24(6), 2499–2512.

    Article  CAS  PubMed  Google Scholar 

  53. Richard, I., Broux, O., Allamand, V., et al. (1995) Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 81(1), 27–40.

    Article  CAS  PubMed  Google Scholar 

  54. Elamrani, N., Brustis, J. J., Dourdin, N., et al. (1995) Desmin degradation and Ca(2+)-dependent proteolysis during myoblast fusion. Biol. Cell 85(2–3), 177–183.

    Article  CAS  PubMed  Google Scholar 

  55. Stockholm, D., Barbaud, C., Marchand, S., et al. (1999) Studies on calpain expression during differentiation of rat satellite cells in primary cultures in the presence of heparin or a mimic compound. Exp. Cell Res. 252(2), 392–400.

    Article  CAS  PubMed  Google Scholar 

  56. Joffroy, S., Dourdin, N., Delage, J. P., Cottin, P., Koenig, J., and Brustis, J. J. (2000) M-calpain levels increase during fusion of myoblasts in the mutant muscular dys-genesis (mdg) mouse. Int. J. Dev. Biol. 44(4), 421–428.

    CAS  PubMed  Google Scholar 

  57. Kwak, K. B., Kambayashi, J., Kang, M. S., Ha, D. B., and Chung, C. H. (1993) Cell-penetrating inhibitors of calpain block both membrane fusion and filamin cleavage in chick embryonic myoblasts. FEBS Lett. 323(1–2), 151–154.

    Article  CAS  PubMed  Google Scholar 

  58. Ueda, Y., Wang, M. C., Ou, B. R., et al. (1998) Evidence for the participation of the proteasome and calpain in early phases of muscle cell differentiation. Int. J. Biochem. Cell Biol. 30(6), 679–694.

    Article  CAS  PubMed  Google Scholar 

  59. Barnoy, S., Maki, M., and Kosower, N. S. (2005) Overexpression of calpastatin inhibits L8 myoblast fusion. Biochem. Biophys. Res. Commun. 332(3), 697–701.

    Article  CAS  PubMed  Google Scholar 

  60. Temm-Grove, C. J., Wert, D., Thompson, V. F., Allen, R. E., and Goll, D. E. (1999) Microinjection of calpastatin inhibits fusion in myoblasts. Exp. Cell Res. 247(1), 293–303.

    Article  CAS  PubMed  Google Scholar 

  61. Dourdin, N., Brustis, J. J., Balcerzak, D., et al. (1997) Myoblast fusion requires fibronectin degradation by exteriorized M-calpain. Exp. Cell Res. 235(2), 385– 394.

    Article  CAS  PubMed  Google Scholar 

  62. Dourdin, N., Balcerzak, D., Brustis, J. J., Poussard, S., Cottin, P., and Ducastaing, A. (1999) Potential m-calpain substrates during myoblast fusion. Exp. Cell Res. 246(2), 433–442.

    Article  CAS  PubMed  Google Scholar 

  63. Dedieu, S., Poussard, S., Mazeres, G., et al. (2004) Myoblast migration is regulated by calpain through its involvement in cell attachment and cytoskeletal organization. Exp. Cell Res. 292(1), 187–200.

    Article  CAS  PubMed  Google Scholar 

  64. Kramerova, I., Kudryashova, E., Tidball, J. G., and Spencer, M. J. (2004) Null mutation of calpain 3 (p94) in mice causes abnormal sarcomere formation in vivo and in vitro. Hum. Mol. Genet. 13(13), 1373–1388.

    Article  CAS  PubMed  Google Scholar 

  65. Kramerova, I., Kudryashova, E., Wu, B., and Spencer, M. J. (2006) Regulation of M-cadherin–{beta}-catenin complex by calpain 3 during terminal stages of myogenic differentiation. Mol. Cell Biol. 26(22), 8437–8447.

    Article  CAS  PubMed  Google Scholar 

  66. Shafey, D., Cote, P. D., and Kothary, R. (2005) Hypomorphic Smn knockdown C2C12 myoblasts reveal intrinsic defects in myoblast fusion and myotube morphology. Exp. Cell Res. 311(1), 49–61.

    Article  CAS  PubMed  Google Scholar 

  67. Shainberg, A., Yagil, G., and Yaffe, D. (1969) Control of myogenesis in vitro by Ca 2+ concentration in nutritional medium. Exp. Cell Res. 58(1), 163–167.

    Article  CAS  PubMed  Google Scholar 

  68. Salzberg, S., Mandelboim, M., Zalcberg, M., Shainberg, A., and Mandelbaum, M. (1995) Interruption of myogenesis by transforming growth factor beta 1 or EGTA inhibits expression and activity of the myogenic-associated (2'–5') oligoadenylate synthetase and PKR. Exp. Cell Res. 219(1), 223–232.

    Article  CAS  PubMed  Google Scholar 

  69. Przybylski, R. J., Szigeti, V. , Davidheiser, S., and Kirby, A. C. (1994) Calcium regulation of skeletal myogenesis. II. Extracellular and cell surface effects. Cell Calcium 15(2), 132–142.

    Article  CAS  PubMed  Google Scholar 

  70. Constantin, B., Cognard, C., and Raymond, G. (1996) Myoblast fusion requires cytosolic calcium elevation but not activation of voltage-dependent calcium channels. Cell Calcium 19(5), 365–374.

    Article  CAS  PubMed  Google Scholar 

  71. David, J. D. and Higginbotham, C. A. (1981) Fusion of chick embryo skeletal myoblasts: interactions of prostaglandin E1, adenosine 3 :5 monophosphate, and calcium influx. Dev. Biol. 82(2), 308–316.

    Article  CAS  PubMed  Google Scholar 

  72. Przybylski, R. J., MacBride, R. G., and Kirby, A. C. (1989) Calcium regulation of skeletal myogenesis. I. Cell content critical to myotube formation. In Vitro Cell Dev. Biol. 25(9), 830–838.

    Article  CAS  PubMed  Google Scholar 

  73. Knudsen, K. A. (1985) The calcium-dependent myoblast adhesion that precedes cell fusion is mediated by glycoproteins. J. Cell Biol. 101(3), 891–897.

    Article  CAS  PubMed  Google Scholar 

  74. Knudsen, K. A., Myers, L., and McElwee, S. A. (1990) A role for the Ca2(+)-dependent adhesion molecule, N-cadherin, in myoblast interaction during myogenesis. Exp. Cell Res. 188(2), 175–184.

    Article  CAS  PubMed  Google Scholar 

  75. Papahadjopoulos, D., Nir, S., and Duzgunes, N. (1990) Molecular mechanisms of calcium-induced membrane fusion. J. Bioenerg. Biomembr. 22(2), 157–179.

    Article  CAS  PubMed  Google Scholar 

  76. Konig, S., Beguet, A., Bader, C. R., and Bernheim, L. (2006) The calcineurin pathway links hyperpolarization (Kir2.1)-induced Ca2+ signals to human myoblast differentiation and fusion. Development 133(16), 3107–3114.

    Article  CAS  PubMed  Google Scholar 

  77. Konig, S., Hinard, V., Arnaudeau, S., et al. (2004) Membrane hyperpolarization triggers myogenin and myocyte enhancer factor-2 expression during human myo-blast differentiation. J. Biol. Chem. 279(27), 28187–28196.

    Article  CAS  PubMed  Google Scholar 

  78. Friday, B. B., Horsley, V., and Pavlath, G. K. (2000) Calcineurin activity is required for the initiation of skeletal muscle differentiation. J. Cell Biol. 149(3), 657–666.

    Article  CAS  PubMed  Google Scholar 

  79. Friday, B. B., Mitchell, P. O., Kegley, K. M., and Pavlath, G. K. (2003) Calcineurin initiates skeletal muscle differentiation by activating MEF2 and MyoD. Differentiation 71(3), 217–227.

    Article  CAS  PubMed  Google Scholar 

  80. Xu, Q., Yu, L., Liu, L., et al. (2002) p38 Mitogen-activated protein kinase-, calcium-calmodulin-dependent protein kinase-, and calcineurin-mediated signaling pathways transcriptionally regulate myogenin expression. Mol. Biol. Cell 13(6), 1940–1952.

    Article  CAS  PubMed  Google Scholar 

  81. Choi, S. W., Baek, M. Y., and Kang, M. S. (1992) Involvement of cyclic GMP in the fusion of chick embryonic myoblasts in culture. Exp. Cell Res. 199(1), 129–133.

    Article  CAS  PubMed  Google Scholar 

  82. Pisconti, A., Brunelli, S., Di Padova, M., et al. (2006) Follistatin induction by nitric oxide through cyclic GMP: a tightly regulated signaling pathway that controls myoblast fusion. J. Cell Biol. 172(2), 233–244.

    Article  CAS  PubMed  Google Scholar 

  83. Lee, K. H., Baek, M. Y. , Moon, K. Y., et al. (1994) Nitric oxide as a messenger molecule for myoblast fusion. J. Biol. Chem. 269(20), 14371–14374.

    CAS  PubMed  Google Scholar 

  84. Long, J. H., Lira, V. A., Soltow, Q. A., Betters, J. L., Sellman, J. E., and Criswell, D. S. (2006) Arginine supplementation induces myoblast fusion via augmentation of nitric oxide production. J. Muscle Res. Cell Motil. 27(8), 577–584.

    Article  CAS  PubMed  Google Scholar 

  85. Lee, S. J. and McPherron, A. C. (2001) Regulation of myostatin activity and muscle growth. Proc. Natl. Acad. Sci. U.S.A. 98(16), 9306–9311.

    Article  CAS  PubMed  Google Scholar 

  86. Iezzi, S., Di Padova, M., Serra, C., et al. (2004) Deacetylase inhibitors increase muscle cell size by promoting myoblast recruitment and fusion through induction of follistatin. Dev. Cell 6(5), 673–684.

    Article  CAS  PubMed  Google Scholar 

  87. Abbott, K. L., Friday, B. B., Thaloor, D., Murphy, T.J., and Pavlath, G. K. (1998) Activation and cellular localization of the cyclosporine A-sensitive transcription factor NF-AT in skeletal muscle cells. Mol. Biol. Cell 9(10), 2905–2916.

    CAS  PubMed  Google Scholar 

  88. Jacquemin, V., Butler-Browne, G. S., Furling, D., and Mouly, V. (2007) IL-13 mediates the recruitment of reserve cells for fusion during IGF-1–induced hypertrophy of human myotubes. J. Cell Sci. 120(Pt 4), 670–681.

    Article  CAS  PubMed  Google Scholar 

  89. Pavlath, G. K. and Horsley, V. (2003) Cell fusion in skeletal muscle–central role of NFATC2 in regulating muscle cell size. Cell Cycle 2(5), 420–423.

    Article  CAS  PubMed  Google Scholar 

  90. Horsley, V., Friday, B. B., Matteson, S., Kegley, K. M., Gephart, J., and Pavlath, G. K. (2001) Regulation of the growth of multinucleated muscle cells by an NFATC2-dependent pathway. J. Cell Biol. 153(2), 329–338.

    Article  CAS  PubMed  Google Scholar 

  91. Horsley, V., Jansen, K. M., Mills, S. T., and Pavlath, G. K. (2003) IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113(4), 483–494.

    Article  CAS  PubMed  Google Scholar 

  92. Schulze, M., Belema-Bedada, F., Technau, A., and Braun, T. (2005) Mesenchymal stem cells are recruited to striated muscle by NFAT/IL-4–mediated cell fusion. Genes Dev. 19(15), 1787–1798.

    Article  CAS  PubMed  Google Scholar 

  93. Lafreniere, J. F., Mills, P., Bouchentouf, M., and Tremblay, J. P. (2006) Interleukin-4 improves the migration of human myogenic precursor cells in vitro and in vivo. Exp. Cell Res. 312(7), 1127–1141.

    Article  CAS  PubMed  Google Scholar 

  94. Jansen, K. M. and Pavlath, G. K. (2006) Mannose receptor regulates myoblast motility and muscle growth. J. Cell Biol. 174(3), 403–413.

    Article  CAS  PubMed  Google Scholar 

  95. Horsley, V. and Pavlath, G. K. (2003) Prostaglandin F2(alpha) stimulates growth of skeletal muscle cells via an NFATC2-dependent pathway. J. Cell Biol. 161(1), 111–118.

    Article  CAS  PubMed  Google Scholar 

  96. Sotiropoulos, A., Ohanna, M., Kedzia, C., et al. (2006) Growth hormone promotes skeletal muscle cell fusion independent of insulin-like growth factor 1 up-regulation. Proc. Natl. Acad. Sci. U.S.A. 103(19), 7315–7320.

    Article  CAS  PubMed  Google Scholar 

  97. Fornaro, M., Burch, P. M., Yang, W., et al. (2006) SHP-2 activates signaling of the nuclear factor of activated T cells to promote skeletal muscle growth. J. Cell Biol. 175(1), 87–97.

    Article  CAS  PubMed  Google Scholar 

  98. Ohtake, Y., Tojo, H., and Seiki, M. (2006) Multifunctional roles of MT1-MMP in myofiber formation and morphostatic maintenance of skeletal muscle. J. Cell Sci. 119(Pt 18), 3822–3832.

    Article  CAS  PubMed  Google Scholar 

  99. Entwistle, A., Curtis, D. H., and Zalin, R. J. (1986) Myoblast fusion is regulated by a prostanoid of the one series independently of a rise in cyclic AMP. J. Cell Biol. 103(3), 857–866.

    Article  CAS  PubMed  Google Scholar 

  100. Shen, W., Prisk, V., Li, Y., Foster, W., and Huard, J. (2006) Inhibited skeletal muscle healing in cyclooxygenase-2 gene-deficient mice: the role of PGE2 and PGF2alpha. J. Appl. Physiol. 101(4), 1215–1221.

    Article  CAS  PubMed  Google Scholar 

  101. Chen, E. H., Pryce, B. A., Tzeng, J. A., Gonzalez, G. A., and Olson, E. N. (2003) Control of myoblast fusion by a guanine nucleotide exchange factor, loner, and its effector ARF6. Cell 114(6), 751–762.

    Article  CAS  PubMed  Google Scholar 

  102. Kim, S., Shilagardi, K., Zhang, S., et al. (2007) A critical function for the actin cytoskeleton in targeted exocytosis of prefusion vesicles during myoblast fusion. Dev. Cell 12(4), 571–586.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Jansen, K.M., Pavlath, G.K. (2008). Molecular Control of Mammalian Myoblast Fusion. In: Chen, E.H. (eds) Cell Fusion. Methods in Molecular Biology™, vol 475. Humana Press. https://doi.org/10.1007/978-1-59745-250-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-250-2_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-911-6

  • Online ISBN: 978-1-59745-250-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics