Advertisement

Cell Fusion pp 99-113 | Cite as

Mammalian Fertilization Is Dependent on Multiple Membrane Fusion Events*

  • Paul M. Wassarman
  • Eveline S. Litscher
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 475)

Summary

Successful completion of fertilization in mammals is dependent on three membrane fusion events. These are (1) the acrosome reaction of sperm, (2) the fusion of sperm and egg plasma membranes to form a zygote, and (3) the cortical reaction of fertilized eggs. Extensive research into the molecular basis of each of these events has identified candidate proteins and factors involved in fusion of membranes during the mammalian fertilization process. Some of this information is provided here.

Key Words

Mammalian fertilization sperm eggs acrosome reaction sperm–egg fusion cortical reaction 

Notes

Acknowledgments

We are grateful to Elizabeth Chen for her kind invitation to write this chapter. Whenever possible, we have referred to articles and reviews published between 2000 and 2006. Our laboratory is supported in part by the National Institutes of Health (HD35105).

References

  1. 1.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2002) Molecular Biology of the Cell (4th ed.). Garland Science, New York.Google Scholar
  2. 2.
    Jahn, R., Lang, T., and Sudhof, T. C. (2003) Membrane fusion. Cell 112, 519–533.CrossRefPubMedGoogle Scholar
  3. 3.
    Lodish, H., Berk, A., Matsudaira, P., Kaiser, C. A., Krieger, M., Scott, M. P., Zipursky, S. L., and Darnell, J. (2004) Molecular Cell Biology (5th ed.). Freeman, New York.Google Scholar
  4. 4.
    Evans, J. P. and Florman, H. M. (2002) The state of the union: the cell biology of fertilization. Nat. Cell Biol. 4 (Suppl. 1), S57–S63.CrossRefPubMedGoogle Scholar
  5. 5.
    Evans, J. P. (2002) The molecular basis of sperm–oocyte membrane interactions during mammalian fertilization. Hum. Reprod. Update 8, 297–311.CrossRefPubMedGoogle Scholar
  6. 6.
    Florman, H. M. and Ducibella, T. (2006) Fertilization in mammals, in The Physiology of Reproduction (Neill J.D., ed.), vol. 1. Elsevier, San Diego, pp. 55–112.Google Scholar
  7. 7.
    Primakoff, P. and Myles, D. G. (2002) Gamete fusion in mammals, in Fertilization (Hardy, D. M., ed.). Academic Press, San Diego, pp. 303–318.CrossRefGoogle Scholar
  8. 8.
    Ramalho-Santos, J., Schatten, G., and Moreno, R. D. (2002) Control of membrane fusion during spermiogenesis and the acrosome reaction. Biol. Reprod. 69, 254–260.Google Scholar
  9. 9.
    Stein, K. K., Primakoff, P., and Myles, D. (2004) Sperm–egg fusion: events at the plasma membrane. J. Cell Sci. 117, 6269–6274.CrossRefPubMedGoogle Scholar
  10. 10.
    Wassarman, P. M. (1999) Mammalian fertilization: molecular aspects of gamete adhesion, exocytosis, and fusion. Cell 96, 175–183.CrossRefPubMedGoogle Scholar
  11. 11.
    Wassarman, P. M., Jovine, L., and Litscher, E. S. (2001) A profile of fertilization in mammals. Nat. Cell Biol. 3, E59–E64.CrossRefPubMedGoogle Scholar
  12. 12.
    Chernomordik, L. V. and Kozlov, M. M. (2003) Protein–lipid interplay in fusion and fission of biological membranes. Annu. Rev. Biochem. 72, 175–207.CrossRefPubMedGoogle Scholar
  13. 13.
    Jahn, R. and Grubmuller, H. (2002) Membrane fusion. Curr. Opin. Cell Biol. 14, 488–495.CrossRefPubMedGoogle Scholar
  14. 14.
    Mayer, A. (2002) Membrane fusion in eukaryotic cells. Annu. Rev. Cell Dev. Biol. 18, 289–314.CrossRefPubMedGoogle Scholar
  15. 15.
    Eddy, E. M. (2006) The spermatozoon, in The Physiology of Reproduction (Neill J. D., ed.), vol. 1. Elsevier, San Diego, pp. 3–54.Google Scholar
  16. 16.
    Gerton, G. L. (2002) Function of the sperm acrosome, in Fertilization (Hardy, D. M., ed.). Academic Press, San Diego, pp. 265–302.CrossRefGoogle Scholar
  17. 17.
    Yanagimachi, R. (1994) Mammalian fertilization, in The Physiology of Reproduction (Knobil E. and Neill J. D., eds.), vol. 1. Raven Press, New York, pp. 189–317.Google Scholar
  18. 18.
    Wassarman, P. M. and Albertini, D. F. (1994) Cellular and molecular biology of the mammalian ovum, in The Physiology of Reproduction (Knobil, E. Neill, J. D., eds.), vol. 1. Raven Press, N Y, pp. 79–122.Google Scholar
  19. 19.
    Yanagimachi, R. (1981) Mechanisms of fertilization in mammals, in Fertilization and Embryonic Development In Vitro (Mastroianni L. and Biggers J. D., eds.). Plenum Press, New York, pp. 81–187.Google Scholar
  20. 20.
    Jaiswal, B. S. and Eisenbach, M. (2002) Capacitation, in Fertilization (Hardy, D. M., ed.). Academic Press, San Diego, pp. 57–117.CrossRefGoogle Scholar
  21. 21.
    Kim, K.-S. and Gerton, G. L. (2003) Differential release of soluble and matrix components: evidence for intermediate states of secretion during spontaneous acro- somal exocytosis in mouse sperm. Dev. Biol. 264, 141–152.CrossRefPubMedGoogle Scholar
  22. 22.
    Kopf, G. S., Ning, X. P., Visconti, P. E., Purdon, M., Galantino-Homer, H., and Fornes, M. (1999) Signaling mechanisms controlling mammalian sperm fertiliza- tion competence and activation. In The Male Gamete (Gagnon C., ed.) 105–118. Cache River Press, Vienna, IL.Google Scholar
  23. 23.
    Florman, H. M., Kirkman-Brown, J., Brown, J. C., Jungnickel, M. K., and Sutton, K. A. (2003) The acrosome reaction: an example of egg-activated signal transduc- tion in sperm. ChemTracts Biochem. Mol. Biol. 16, 126–133.Google Scholar
  24. 24.
    Kopf, G. S. (2002) Signal transduction mechanisms regulating sperm acrosomal exocytosis, in Fertilization (Hardy, D. M., ed.). Academic Press, San Diego, pp. 181–223.CrossRefGoogle Scholar
  25. 25.
    Wassarman, P. M., Bleil, J. D., Florman, H. M., Greve, J. M., Roller, R. J., Salzmann, G. S., and Samuels, F. G. (1985) The mouse egg 's sperm receptor: what is it and how does it work? Cold Spring Harb. Symp. Quant. Biol. 50, 11–19.PubMedGoogle Scholar
  26. 26.
    Arnoult, C., Zeng, Y. , and Florman, H. M. (1996) ZP3-dependent activation of sperm cation channels regulates acrosomal secretion during mammalian fertilization. J. Cell Biol. 134, 637–645.CrossRefPubMedGoogle Scholar
  27. 27.
    Darszon, A., Acevedo, J. J., Galindo, B. E., Hernandez-Gonzalez, E. O., Nishigaki, T., Trevino, C. L., Wood, C., and Beltran, C. (2006) Sperm channel diversity and functional multiplicity. Reproduction 131, 977–988.CrossRefPubMedGoogle Scholar
  28. 28.
    Jungnickel, M. K., Marrero, H., Birnbaumer, L., Lemos, J. R., and Florman, H. M. (2001) Trp2 regulates entry of Ca2+ into mouse sperm triggered by egg ZP3. Nat. Cell Biol. 5, 499–502.CrossRefGoogle Scholar
  29. 29.
    De Blas, G. A., Roggero, C. M., Tomes, C. N., and Mayorga, L. S. (2005) Dynamics of SNARE assembly and disassembly during sperm acrosomal exocytosis. PloS Biol. 3, e323.CrossRefPubMedGoogle Scholar
  30. 30.
    Iida, H., Yoshinaga, Y., Tanaka, S., Toshimori, K., and Mori, T. (1999) Identification of Rab3A GTPase as an acrosome-associated small GTP-binding protein in rat sperm. Dev. Biol. 211, 144–155.CrossRefPubMedGoogle Scholar
  31. 31.
    Ramalho-Santos, J., Moreno, R. D., Sutovsky, P., Chan, A. W., Hewitson, L., Wessel, G. M., Simerly, C. R., and Schatten, G. (2000) SNAREs in mammalian sperm: possible implications for fertilization. Dev. Biol. 223, 54–69.CrossRefPubMedGoogle Scholar
  32. 32.
    Tomes, C. N., Michaut, M., De Blas, G. A., Visconti, P., Matti, U., and Mayorga, L. S. (2002) SNARE complex assembly is required for human sperm acrosome reaction. Dev. Biol. 243, 326–338.CrossRefPubMedGoogle Scholar
  33. 33.
    Tomes, C. N., De Blas, G. A., Michaut, M. A., Farre, E. V., Cherhitin, O., Visconti, P. E., and Mayorga, L. S. (2005) Alpha-SNAP and NSF are required in a priming step during the human sperm acrosome reaction. Mol. Hum. Reprod. 11, 43–51.CrossRefPubMedGoogle Scholar
  34. 34.
    Yunes, R., Michaut, M., Tomes, C., and Mayorga, L. S. (2000) Rab3A triggers the acrosome reaction in permeabilized human spermatozoa. Biol. Reprod. 62, 1084–1089.CrossRefPubMedGoogle Scholar
  35. 35.
    Howes, E. A. and Jones, R. (2003) Secondary binding of mammalian sperm to the zona pellucida. ChemTracts Biochem. Mol. Biol. 16, 134–141.Google Scholar
  36. 36.
    Oh, E., Wortzman, G. B., Zhu, X., and Evans, J. P. (2003) Getting sperm and egg together: the molecules of gamete membrane interactions. ChemTracts Biochem. Mol. Biol. 16, 142–157.Google Scholar
  37. 37.
    White, J. M. (2003) ADAMs: modulators of cell–cell and cell–matrix interactions. Curr. Opin. Cell Biol. 15, 598–606.CrossRefPubMedGoogle Scholar
  38. 38.
    Cho, C., Bunch, D. O., Faure, J.-E., Goulding, E. H., Eddy, E. M., Primakoff, P., and Myles, D. G. (1998) Fertilization defects in sperm from mice lacking fertilin β. Science 281, 1857–1859.CrossRefGoogle Scholar
  39. 39.
    Cho, C., Ge H., Branciforte, D., Primakoff, P., and Myles, D. G. (2000) Analysis of mouse fertilin in wild-type and fertilin β−/− sperm: evidence for C-terminal modification, α / β dimerization, and lack of essential role of fertilin b in sperm–egg fusion. Dev. Biol. 222, 289–295.CrossRefPubMedGoogle Scholar
  40. 40.
    He, Z. Y., Brakefusch, C., Fassler, R., Kreidberg, J. A., Primakoff, P. , and Myles, D. G. (2003) None of the integrins known to be present on the mouse egg or to be ADAM receptors are essential for sperm–egg binding and fusion. Dev. Biol. 254, 226–237.CrossRefPubMedGoogle Scholar
  41. 41.
    Kim, E., Yamashita, M., Nakanishi, T., Park, K.-E., Kimura, M., Kashiwabara, S.-I., and Baba, T. (2006) Mouse sperm lacking ADAM1β /ADAM2 fertilin can fuse with the egg plasma membrane and effect fertilization. J. Biol. Chem. 281, 5634–5639.CrossRefPubMedGoogle Scholar
  42. 42.
    Miller, B. J., Georges-Labouesse, E., Primakoff, P., and Myles, D. G. (2000) Normal fertilization occurs with eggs lacking the integrin α 6 β1 and is CD9-depen-dent. J. Cell Biol. 149, 1289–1295.CrossRefPubMedGoogle Scholar
  43. 43.
    Nishimura, H., Cho, C., Branciforte, D. R., Myles, D. G., and Primakoff, P. (2001) Analysis of loss of adhesive function in sperm lacking cyritestin or fertilin β. Dev. Biol. 233, 204–213.CrossRefGoogle Scholar
  44. 44.
    Shamsadin, R., Adham, I.M., Nayernia, K., Heinlein, U. A. O., Oberwinkler, H., and Engel, W. (1999) Male mice deficient for germ-cell cyritestin are infertile. Biol. Reprod. 61, 1445–1451.CrossRefPubMedGoogle Scholar
  45. 45.
    Stein, K. K., Go, J. C., Lane, W. S., Primakoff, P., and Myles, D. G. (2006) Proteomic analysis of sperm regions that mediate sperm–egg interactions. Proteomics 6, 3533–3543.CrossRefPubMedGoogle Scholar
  46. 46.
    Hemler, M. E. (1998) Integrin associated proteins. Curr. Opin. Cell Biol. 10, 578–585.CrossRefPubMedGoogle Scholar
  47. 47.
    Porter, J. C. and Hogg, N. (1998) Integrins take partners: cross-talk between integ- rins and other membrane receptors. Trends Cell Biol. 8, 390–396.CrossRefPubMedGoogle Scholar
  48. 48.
    Tachibana, I. and Hemler, M. E. (1999) Role of transmembrane 4 superfamily (TM4SF) proteins CD9 and CD81 in muscle cell fusion and myotube maintenance. J. Cell Biol. 146, 893–904.CrossRefPubMedGoogle Scholar
  49. 49.
    Kaji, K., Odu, S., Shikano, T., Ohnuki, T., Uematsu, Y. , Sakagami, J., Tada, N., Miyazaki, S., and Kudo, A. (2000) The gamete fusion process is defective in eggs of CD9-deficient mice. Nat. Genet. 24, 279–282.CrossRefPubMedGoogle Scholar
  50. 50.
    Le Naour, F., Rubinstein, E., Jasmin, C., Prenant, M., and Boucheix, C. (2000) Severely reduced female fertility in CD9-deficient mice. Science 287, 319–321.CrossRefPubMedGoogle Scholar
  51. 51.
    Miyado, K., Yamada, G., Yamada, S., Hasuwa, H., Nakamura, Y., Ryu, F., Suzuki, K., Kosai, K., Inoue, K., Ogura, A., Okabe, M., and Mekada, E. (2000) Requirement of CD9 on the egg plasma membrane for fertilization. Science 287, 321–324.CrossRefPubMedGoogle Scholar
  52. 52.
    Zhu, G. Z., Miller, B. J., Boucheix, C., Rubinstein, E., Liu, C. C., Hynes, R. O., Myles, D. G., and Primakoff, P. (2002) Residues SFQ (173–175) in the large extracellular loop of CD9 are required for gamete fusion. Development 129, 1995–2002.PubMedGoogle Scholar
  53. 53.
    Chen, M. S., Tung, K. S. K., Coonrod, S. A., Takahashi, Y., Bigler, D., Chang, A., Yamashita, Y., Kincade, P. W., Herr, J. C., and White, J. M. (1999) Role of integrin-associated protein CD9 in binding between sperm ADAM2 and the egg integrin α 6β1: implications for murine fertilization. Proc. Natl. Acad. Sci., U.S.A. 96, 11830–11835.CrossRefPubMedGoogle Scholar
  54. 54.
    Ellerman, D. A., Ha, C., Primakoff, P., Myles, D. G., and Dveksler, G. S. (2003) Direct binding of the ligand PSG17 to CD9 requires a CD9 site essential for sperm–egg fusion. Mol. Biol. Cell 14, 5098–5103.CrossRefPubMedGoogle Scholar
  55. 55.
    Takahashi, Y., Bigler, D., Ito, Y., and White, J. M. (2001) Sequence specific interaction between the disintegrin domain of mouse ADAM 3 and murine eggs: role of beta1 integrin-associated proteins CD9, CD81, and CD98. Mol. Biol. Cell 12, 809–820.PubMedGoogle Scholar
  56. 56.
    Inoue, N., Ikawa, M., Isotani, A., and Okabe, M. (2005) The immunoglobin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434, 234–238.CrossRefPubMedGoogle Scholar
  57. 57.
    Ellerman, D. A., Da Ros, V. G., Cohen, D. J., Busso, D., Morgenfeld, M. M., and Cuasnicu, P. S. (2002) Expression and structure–function analysis of de, a sperm cysteine-rich secretory protein that mediates gamete fusion. Biol. Reprod. 67, 1225–1231.CrossRefPubMedGoogle Scholar
  58. 58.
    Alfieri, J. A., Martin, A. D., Takeda, J., Kondoh, G., Myles, D. G., and Primakoff, P. (2003) Infertility in female mice with an oocyte-specific knockout of GPI-anchored proteins. J. Cell Sci. 116, 2149–2155.CrossRefPubMedGoogle Scholar
  59. 59.
    Coonrod, S. A., Naaby-Hansen, S., Shetty, J., Shibahara, H., Chen, M., White, J. M., and Herr, J. C. (1999) Treatment of mouse oocytes with PI-PLC releases 70-kDa (pI 5) and 35- to 45-kDa (pI 5.5) protein clusters from the egg surface and inhibits sperm–oolemma binding and fusion. Dev. Biol. 207, 334–349.CrossRefPubMedGoogle Scholar
  60. 60.
    Kondoh, G., Tojo, H., Nakatani, Y., Komazawa, N., Murata, C., Yamagata, K., Maeda, Y., Kinoshita, T., Okabe, M., Taguchi, R., and Takeda, J. (2005) Angiotensin-converting enzyme is a GPI-anchored protein releasing factor crucial for fertilization. Nat. Med. 11, 160–166.CrossRefPubMedGoogle Scholar
  61. 61.
    Fuchs, S., Frenzel, K., Hubert, C., Lyng, R., Muller, L., Michaud, A., Xiao, H. D., Adams, J. W., Capecchi, M. R., Corvol, P., Shur, B. D., and Bernstein, K. E. (2005) Male fertility is dependent on dipeptidase activity of testis ACE. Nat. Med. 11, 1139–1140.CrossRefGoogle Scholar
  62. 62.
    Leisle, L., Parkin, E. T., Turner, A. J., Hooper, N. M. (2005) Angiotensin-convert- ing enzyme as a GPIase: a critical reevaluation. Nat. Med. 11, 1140–1142.CrossRefGoogle Scholar
  63. 63.
    Runft, L. L., Jaffe, L. A., and Mehlmann, L. M. (2002) Egg activation at fertiliza-tion: where it all begins. Dev. Biol. 245, 237–254.CrossRefPubMedGoogle Scholar
  64. 64.
    Swann, K. and Jones, K. T. (2002) Membrane events of egg activation, in Fertilization (Hardy, D. M., ed.). Academic Press, San Diego, pp. 319–346.CrossRefGoogle Scholar
  65. 65.
    Ducibella, T. (1996) The cortical reaction and development of activation compe- tence in mammalian oocytes. Hum. Reprod. Update 2, 29–42.CrossRefPubMedGoogle Scholar
  66. 66.
    Abbott, A. L. and Ducibella, T. (2001) Calcium and the control of mammalian cortical granule exocytosis. Front. Biosci. 6, d792–806.CrossRefPubMedGoogle Scholar
  67. 67.
    Tsaadon, A., Eliyahu, E., Shtraizent, N., and Shalgi, R. (2006) When a sperm meets an egg: block to polyspermy. Mol. Cell. Endocrinol. 252, 107–114.CrossRefPubMedGoogle Scholar
  68. 68.
    Eliyahu, E., Tsaadon, A., Shtraizent, N., and Shalgi, R. (2005) The involvement of protein kinase C and actin filaments in cortical granule exocytosis in the rat. Reproduction 129, 161–170.CrossRefPubMedGoogle Scholar
  69. 69.
    Rossi, E. A., Li, Z., Feng, H., and Rubin, C. S. (1999) Characterization of the targeting, binding, and phosphorylation site domains of an A kinase anchor protein and a myristoylated alanine-rich C kinase substrate-like analog that are encoded by a single gene. J. Biol. Chem. 274, 27201–27210.CrossRefPubMedGoogle Scholar
  70. 70.
    Evans, J. P. (1999) Sperm disintegrins, egg integrins, and other cell adhesion molecules of mammalian gamete plasma membrane interactions. Front. Biosci. 4, D114–D131.CrossRefPubMedGoogle Scholar
  71. 71.
    Xu, Z., Abbott, A., Kopf, G. S., Schultz, R. M., and Ducibella, T. (1997) Spontaneous activation of ovulated mouse eggs: time-dependent effects on M-phase exit, cortical granule exocytosis, maternal messenger ribonucleic acid recruitment, and inositol 1,4,5-triphosphate sensitivity. Biol. Reprod. 57, 743–750.CrossRefPubMedGoogle Scholar

Additional References

  1. Austin C. R. and Short R. V. (eds.) (1983) Reproduction in Mammals, Book 1, Germ Cells and Fertilization. Cambridge University Press, Cambridge, England.Google Scholar
  2. Dunbar B. S. and O'Rand M.G. (eds.) (1991) A Comparative Overview of Mammalian Fertilization. Plenum Press, New York.Google Scholar
  3. Gwatkin R. B. L. (1977) Fertilization Mechanisms in Man and Mammals. Plenum Press, New York.Google Scholar
  4. Wassarman P. M. (ed.) (1991) Elements of Mammalian Fertilization, vols. 1 and 2. CRC Press, Boca Raton, FL.Google Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Paul M. Wassarman
    • 1
  • Eveline S. Litscher
    • 1
  1. 1.Department of Molecular, Cell and Developmental BiologyMount Sinai School of MedicineNew York

Personalised recommendations