Cell Fusion pp 383-395 | Cite as

Methods to Fuse Macrophages In Vitro

  • Agnès Vignery
Part of the Methods in Molecular Biology™ book series (MIMB, volume 475)


Macrophages are mononucleate cells that fuse in rare and specific instances to form osteo-clasts in bone or giant cells in chronic inflammatory conditions. Because of the central role these cells play in bone metabolism and in inflammation, respectively, methods to study their formation in vitro are described.

Key Words

Macrophage fusion osteoclast giant cell 

Suggested Reading

  1. Abu-Amer, Y., Ross, F. P., Edwards, J., and Teitelbaum, S.L. (1997) Endotoxin stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor. J. Clin. Invest. 100, 1557–1565.CrossRefPubMedGoogle Scholar
  2. Bi, L. X., Simmons, D. J., and Mainous, E. (1999) Expression of BMP-2 by rat bone marrow stromal cells in culture. Calcif. Tissue Int. 64, 63–68.CrossRefPubMedGoogle Scholar
  3. Carlo-Stella, C., Di Nicola, M., Milani, R., Longoni, P., Milanesi, M., Bifulco, C., Stucchi, C., Guidetti, A., Cleris, L., Formelli, F., Garotta, G., and Gianni, A. M. (2004) Age- and irradiation-associated loss of bone marrow hematopoietic function in mice is reversed by recombinant human growth hormone. Exp. Hematol. 32, 171–178.CrossRefPubMedGoogle Scholar
  4. Cui, W., Ke, J. Z., Zhang, Q., Ke, H. Z., Chalouni, C., and Vignery, A. (2006) The intracellular domain of CD44 promotes the fusion of macrophages. Blood 107, 796–805.CrossRefPubMedGoogle Scholar
  5. Dobson, K. R., Reading, L., Haberey, M., Marine, X., and Scutt, A. (1999) Centrifugal isolation of bone marrow from bone: an improved method for the recovery and quantitation of bone marrow osteoprogenitor cells from rat tibiae and femurae. Calcif. Tissue Int. 65, 411–413.CrossRefPubMedGoogle Scholar
  6. Gao, Y. H. and Yamaguchi, M. (1999) Suppressive effect of genistein on rat bone osteoclasts: apoptosis is induced through Ca2+ signaling. Biol. Pharm. Bull. 22, 805–809.PubMedGoogle Scholar
  7. Grove, J. E., Bruscia, E., and Krause, D. S. (2004) Plasticity of bone marrow-derived stem cells. Stem Cells 22, 487–500.CrossRefPubMedGoogle Scholar
  8. Harris, R. G., Herzog, E. L., Bruscia, E. M., Grove, J. E., Van Arnam, J. S., and Krause, D. S. (2004) Cells from donor bone marrow can form differentiated epithelial cells in the lung, liver, and skin, without having fused with existing resident cells. Science 305, 90–93.CrossRefPubMedGoogle Scholar
  9. Helming, L. and Gordon, S. (2007) Macrophage fusion induced by IL-4 alternative activation is a multistage process involving multiple target molecules. Eur. J. Immunol. 37, 33–42.CrossRefPubMedGoogle Scholar
  10. Kelly, K. A., Tanaka, S., Baron, R., and Gimble, J. M. (1998) Murine bone marrow stromally derived BMS2 adipocytes support differentiation and function of osteo-clast-like cells in vitro. Endocrinology 139, 2092–2101.CrossRefPubMedGoogle Scholar
  11. Kim, M. S., Day, C. J., Selinger, C. I., Magno, C. L., Stephens, S. R., and Morrison, N. A. (2006) MCP-1–induced human osteoclast-like cells are tartrate-resistant acid phosphatase, NFATc1, and calcitonin receptor-positive but require receptor activator of NF-kappaB ligand for bone resorption. J. Biol. Chem. 281, 1274–1285.CrossRefPubMedGoogle Scholar
  12. Kopen, G. C., Prockop, D. J., and Phinney, D. G. (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl. Acad. Sci. U. S. A. 96, 10711–10716.CrossRefPubMedGoogle Scholar
  13. Kyriakides, T. R., Foster, M. J., Keeney, G. E., Tsai, A., Giachelli, C. M., Clark-Lewis, I., Rollins, B. J., and Bornstein, P. (2004) The CC chemokine ligand, CCL2/ MCP1, participates in macrophage fusion and foreign body giant cell formation. Am. J. Pathol. 165, 2157–2166.CrossRefPubMedGoogle Scholar
  14. Phinney, D. G., Kopen, G., Isaacson, R. L., and Prockop, D. J. (1999) Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J. Cell Biochem. 72, 570–585.CrossRefPubMedGoogle Scholar
  15. Rakopoulos, M., Ikegame, M., Findlay, D. M., Martin, T. J., and Moseley, J. M. (1995) Short treatment of osteoclasts in bone marrow culture with calcitonin causes prolonged suppression of calcitonin receptor mRNA. Bone 17, 447–453.CrossRefPubMedGoogle Scholar
  16. Saginario, C., Qian, H.-Y., and Vignery, A. (1995) Identification of an inducible surface molecule specific to fusing macrophages. Proc. Natl. Acad. Sci. U. S. A. 92, 12210–12214.CrossRefPubMedGoogle Scholar
  17. Saginario, C., Sterling, H., Beckers, C., Kobayashi, R.-J., Solimena, M., Ullu, E., and Vignery, A. (1998) MFR, a putative receptor mediating the fusion of macro-phages. Mol. Cell Biol. 18, 6213–6223.PubMedGoogle Scholar
  18. Sakai, A., Nishida, S., Okimoto, N., Okazaki, Y., Hirano, T., Norimura, T., Suda, T., and Nakamura, T. (1998) Bone marrow cell development and trabecular bone dynamics after ovariectomy in ddy mice. Bone 23, 443–451.CrossRefPubMedGoogle Scholar
  19. Seto, H., Aoki, K., Kasugai, K., and Ohya, K. (1999) Trabecular bone turnover, bone marrow cell development, and gene expression of bone matrix proteins after low calcium feeding in rats. Bone 25, 687–695.CrossRefPubMedGoogle Scholar
  20. Sterling, H., Saginario, C., and Vignery, A. (1998) CD44 occupancy prevents macro-phage multinucleation. J. Cell Biol. 843, 837–847.CrossRefGoogle Scholar
  21. Strawn, W. B., Richmond, R. S., Tallant, E. A., Gallagher, P. E., and Ferrario, C. M. (2004) Renin–angiotensin system expression in rat bone marrow haematopoietic and stromal cells. Br. J. Hematol. 126, 120–126.CrossRefGoogle Scholar
  22. Tropel, P., Noel, D, Platet, N., Legrand, P., Benabid, A. L., and Berger, F. (2004) Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Exp. Cell Res. 295, 395–406.CrossRefPubMedGoogle Scholar
  23. Uchiyama, S. and Yamaguchi, M. (2004) Inhibitory effect of β-cryptoxanthin on osteo-clast-like cell formation in mouse marrow cultures. Biochem. Pharmacol. 67, 1297–1305.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Agnès Vignery
    • 1
  1. 1.Department of OrthopaedicsYale UniversityNew Haven

Personalised recommendations