Advertisement

Cell Fusion pp 263-274 | Cite as

Live Imaging of Drosophila Myoblast Fusion

  • Brian E. Richardson
  • Karen Beckett
  • Mary K. Baylies
Protocol
  • 1.8k Downloads
Part of the Methods in Molecular Biology™ book series (MIMB, volume 475)

Summary

Myoblast fusion requires a number of cellular behaviors, including cell migration, recognition, and adhesion, as well as a series of subcellular behaviors, such as cytoskeletal rearrangements, vesicle trafficking, and membrane dynamics, leading to two cells becoming one. With the discovery of fluorescent proteins that can be introduced and studied within living cells, the possibility of monitoring these complex processes within the living embryo is now a reality. Live imaging, unlike imaging techniques for fixed embryos, allows the opportunity to visualize and measure the dynamics of these processes in vivo. This chapter describes the development and use of live imaging techniques to study myoblast fusion in Drosophila.

Key Words

Drosophila myoblast fusion muscle development fluorescent proteins live imaging 

Notes

Acknowledgments

We thank members of Baylies' laboratory, Owen Richardson, and especially Kat Hadjantonakis for stimulating discussions and advice. We also recognize the valuable input from Julia Kaltschmidt during our early days of filming. This work is supported by NIH grants GM56989 and GM78318 to M.B.

References

  1. 1.
    Baylies, M. K., Bate, M., and Ruiz Gomez, M. (1998) CellM 93, 921–927.CrossRefGoogle Scholar
  2. 2.
    Capovilla, M., Kambris, Z., and Botas, J. (2001) Development 128, 1221–1230.PubMedGoogle Scholar
  3. 3.
    Frasch, M. (1999) Curr. Opin. Genet. Dev. 9, 522–529.CrossRefPubMedGoogle Scholar
  4. 4.
    Beckett, K. and Baylies, M. K. (2006) Dev. Biol. 299, 176–192.CrossRefPubMedGoogle Scholar
  5. 5.
    Carmena, A. and Baylies, M. (2006) Muscle Development in Drosophila (Sink, H., ed.). Landes Bioscience, New York, pp. 79–89.CrossRefGoogle Scholar
  6. 6.
    Bate, M. (1990) Development 110, 791–804.PubMedGoogle Scholar
  7. 7.
    Beckett, K. and Baylies, M. K. (2007) 3D analysis of founder cell and fusion competent myoblast arrangements outlines a new model of myoblast fusion. Dev. Biol. 309, 113–125.CrossRefPubMedGoogle Scholar
  8. 8.
    Chen, E. H. and Olson, E. N. (2004) Trends Cell Biol. 14, 452–460.CrossRefPubMedGoogle Scholar
  9. 9.
    Kaltschmidt, J. A., Davidson, C. M., Brown, N. H., and Brand, A. H. (2000) Nat. Cell Biol. 2, 7–12.CrossRefPubMedGoogle Scholar
  10. 10.
    Haseloff, J., Dormand, E., and Brand, A. H. (1998) Methods Mol. Biol. 122, 241–259.Google Scholar
  11. 11.
    Shaner, N. C., Steinbach, P. A., and Tsien, R. Y. (2005) Nat. Methods 2, 905– 909.CrossRefPubMedGoogle Scholar
  12. 12.
    Zacharias, D. A. and Tsien, R. Y. (2006) Methods Biochem. Anal. 47, 83–120.CrossRefPubMedGoogle Scholar
  13. 13.
    Baird, G. S., Zacharias, D. A., and Tsien, R. Y. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 11984–11989.CrossRefPubMedGoogle Scholar
  14. 14.
    Bevis, B. J. and Glick, B. S. (2002) Nat. Biotechnol. 20, 83–87.CrossRefPubMedGoogle Scholar
  15. 15.
    Barolo, S., Castro, B., and Posakony, J. W. (2004) Biotechniques 36, 436–440, 442.PubMedGoogle Scholar
  16. 16.
    Verkhusha, V. V., Tsukita, S., and Oda, H. (1999) FEBS Lett. 445, 395–401.CrossRefPubMedGoogle Scholar
  17. 17.
    Lee, T. and Luo, L. (1999) Neuron 22, 451–461.CrossRefPubMedGoogle Scholar
  18. 18.
    Grieder, N. C., de Cuevas, M., and Spradling, A. C. (2000) Development 127, 4253–4264.PubMedGoogle Scholar
  19. 19.
    Brand, A. H. and Perrimon, N. (1993) Development 118, 401–415.PubMedGoogle Scholar
  20. 20.
    Baylies, M. K. and Bate, M. (1996) Science 272, 1481–1484.CrossRefPubMedGoogle Scholar
  21. 21.
    Schnorrer, F. and Dickson, B. J. (2004) Dev Cell 7, 9–20.CrossRefPubMedGoogle Scholar
  22. 22.
    Knirr, S., Azpiazu, N., and Frasch, M. (1999) Development 126, 4525–4535.PubMedGoogle Scholar
  23. 23.
    Halfon, M. S., Carmena, A., Gisselbrecht, S., Sackerson, C. M., Jimenez, F., Baylies, M. K., and Michelson, A. M. (2000) Cell 103, 63–74.CrossRefPubMedGoogle Scholar
  24. 24.
    Halfon, M. S., Gisselbrecht, S., Lu, J., Estrada, B., Keshishian, H., and Michelson, A. M. (2002) Genesis 34, 135–138.CrossRefPubMedGoogle Scholar
  25. 25.
    Barolo, S., Carver, L. A., and Posakony, J. W. (2000) Biotechniques 29, 726, 728, 730, 732.Google Scholar
  26. 26.
    Dutta, D., Bloor, J. W., Ruiz-Gomez, M., VijayRaghavan, K., and Kiehart, D. P. (2002) Genesis 34, 146–151.CrossRefPubMedGoogle Scholar
  27. 27.
    Bellaiche, Y., Gho, M., Kaltschmidt, J. A., Brand, A. H., and Schweisguth, F. (2001) Nat. Cell Biol. 3, 50–57.CrossRefPubMedGoogle Scholar
  28. 28.
    Ranganayakulu, G., Schulz, R. A., and Olson, E. N. (1996) Dev. Biol. 176, 143–148.CrossRefPubMedGoogle Scholar
  29. 29.
    Schnorrer, F., Kalchhauser, I., and Dickson, B. J. (2007) Dev. Cell 12, 751–766.CrossRefPubMedGoogle Scholar
  30. 30.
    Chen, E. H. and Olson, E. N. (2001) Dev. Cell 1, 705– 715.CrossRefPubMedGoogle Scholar
  31. 31.
    Beckett, K., Rochlin, K. M., Duan, H., Nguyen, H. T., and Baylies, M. K. (2008) Expression and functional analysis of a novel Fusion Competent Myoblast specific GAL4 driver. Gene Expr. Patterns 8, 87–91.CrossRefPubMedGoogle Scholar
  32. 32.
    Stute, C., Kesper, D., Holz, A., Buttgere, D., and Renkerwitz-Ashl, R. (2006) Establishment of cell type specific Galy-driver lines for the mesoderm of dro-sophila. Dros. Inf. Serv. 89, 111–115.Google Scholar
  33. 33.
    Kocherlakota, K. S., Wu, J. M., McDermott, J., and Abmayr, S. M. (2008) Analysis of the Cell Adhesion Molecule Sticks-and-Stones Reveals Multiple Redundant Functional Domains, Protein-Interaction Motifs and Phosphorylated Tyrosines That Direct Myoblast Fusion in Drosophila melanogaster. Genetics 178, 1371–1383.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Brian E. Richardson
    • 1
  • Karen Beckett
    • 1
  • Mary K. Baylies
    • 1
  1. 1.Program in Developmental BiologyMemorial Sloan Kettering Institute and Weill Graduate School at Cornell Medical SchoolNew York

Personalised recommendations