Cell Fusion pp 245-262 | Cite as

Ultrastructural Imaging of Cell Fusion in Caenorhabditis elegans

  • Star Ems
  • William A. Mohler
Part of the Methods in Molecular Biology™ book series (MIMB, volume 475)


Caenorhabditis elegans is a well-established model system particularly suited for studying cell–cell fusion because of its highly predictable and rapid development and its known cell lineage. This chapter focuses on understanding the ultrastructural components of cell fusion through the use of transmission electron microscopy (TEM). Published TEM studies have described the initial demonstration of syncytial cells in the worm, the vesiculation of the bilayers between cells during widening of the normal fusion aperture, and the appearance of microfusion intermediates in the membranes of cells with fusion-defective mutations. Capturing events observed in embryos on the light microscope and preserving the integrity of cellular membranes for examination by TEM require some special considerations that differ from many ultrastructural studies of cells. The principles of different techniques for TEM and details of protocols that have been used to investigate cell fusion in the nematode are discussed in this chapter.

Key Words:

Cell fusion; ultrastructure; transmission electron microscopy; Caenorhabditis elegans


  1. 1.
    Andreasen, A. and Ren, H. (2003) Extending the resolution of light microscopy and electron microscopy digitized images with reference to cellular changes after in vivo low oxygen exposure. J. Neurosci. Methods 122, 157–170.CrossRefPubMedGoogle Scholar
  2. 2.
    Frey, T. G., Perkins, G. A., and Ellisman, M. H. (2006) Electron tomography of membrane-bound cellular organelles. Annu. Rev. Biophys. Biomol. Struct. 35, 199–224.CrossRefPubMedGoogle Scholar
  3. 3.
    Koster, A. J. and Klumperman, J. (2003) Electron microscopy in cell biology: integrating structure and function. Nat. Rev. Mol. Cell Biol. 4, SS6–SS10.Google Scholar
  4. 4.
    Sulston, J. E., Schierenberg, E., White, J. G., and Thomson, J. N. (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119.CrossRefPubMedGoogle Scholar
  5. 5.
    Albertson, D. G. and Thomson, J. N. (1976) The pharynx of C. elegans. Philos. Trans. R. Soc. Lond. Biol. 275, 299–325.CrossRefGoogle Scholar
  6. 6.
    Nguyen, C. Q., Hall, D. H., Yang, Y., and Fitch, D. H. (1999) Morphogenesis of the Caenorhabditis elegans male tail tip. Dev. Biol. 207, 86–106.CrossRefPubMedGoogle Scholar
  7. 7.
    Sharma-Kishore, R., White, J. G., Southgate, E., and Podbilewicz, B. (1999) Formation of the vulva in Caenorhabditis elegans: a paradigm for organogenesis. Development 126, 691–699.PubMedGoogle Scholar
  8. 8.
    Newman, A. P., White, J. G., and Sternberg, P. W. (1996) Morphogenesis of the C. elegans hermaphrodite uterus. Development 122, 3617–3623.PubMedGoogle Scholar
  9. 9.
    Mohler, W. A., Simske, J. S., Williams-Masson, E. M., Hardin, J. D., and White, J. G. (1998) Dynamics and ultrastructure of developmental cell fusions in the Caenorhabditis elegans hypodermis. Curr. Biol. 8, 1087–1090.CrossRefPubMedGoogle Scholar
  10. 10.
    Shemer, G., Suissa, M., Kolotuev, I., Nguyen, K., Hall, D., and Podbilewicz, B. (2004) EFF-1 Is sufficient to initiate and execute tissue-specific cell fusion in C. elegans. Curr. Biol. 14, 1587–1591.CrossRefPubMedGoogle Scholar
  11. 11.
    Gattegno, T., Mittal, A., Valansi, C., Nguyen, K. C., Hall, D. H., Chernomordik, L. V. , and Podbilewicz. B. (2007) Genetic control of fusion pore expansion in the epidermis of Caenorhabditis elegans. Mol. Biol. Cell 18, 1153–1166.CrossRefPubMedGoogle Scholar
  12. 12.
    del Campo, J. J., Opoku-Serebuoh, E., Isaacson, A. B., Scranton, V. L., Tucker, M., Han, M., and Mohler, W. A. (2005) Fusogenic activity of EFF-1 is regulated via dynamic localization in fusing somatic cells of C. elegans. Curr. Biol. 15, 413–423.CrossRefPubMedGoogle Scholar
  13. 13.
    Nolan, S., Cowan, A. E., Koppel, D., Jin, H., and Grote, E. (2006) Fus1 regulates the opening and expansion of fusion pores between mating yeast. Mol. Biol. Cell 17, 2439–2450.CrossRefPubMedGoogle Scholar
  14. 14.
    Doberstein, S. K., Fetter, R. D., Mehta, A. Y. , and Goodman, C. S. (1997) Genetic analysis of myoblast fusion: blown fuse is required for progression beyond the prefusion complex. J. Cell Biol. 136, 1249–1261.CrossRefPubMedGoogle Scholar
  15. 15.
    Lucic, V., Forster, F., and Baumeister, W. (2005) Structural studies by electron tomography: from cells to molecules. Annu. Rev. Biochem. 74, 833–865.CrossRefPubMedGoogle Scholar
  16. 16.
    Priess, J. R. and Hirsh, D. I. (1986) C. elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo. Dev. Biol. 117, 156–173.CrossRefPubMedGoogle Scholar
  17. 17.
    Kirkham, M., Müller-Reichert, T., Oegema, K., Grill, S., and Hyman, A. (2003) SAS-4 is a C. elegans centriolar protein that controls centrosome size. Cell 112, 575–587.CrossRefPubMedGoogle Scholar
  18. 18.
    Rappleye, C. A., Paredez, A. R., Smith, C. W., McDonald, K. L., and Aroian, R. V. (1999) The coronin-like protein POD-1 is required for anterior–posterior axis formation and cellular architecture in the nematode Caenorhabditis elegans. Genes Dev. 13, 2838–2851.CrossRefPubMedGoogle Scholar
  19. 19.
    Rostaing, P., Weimer, R. M., Jorgensen, E. M., Triller, A., and Bessereau J. L. (2004) Preservation of immunoreactivity and fine structure of adult C. elegans tissues using high-pressure freezing. J. Histochem. Cytochem. 52, 1–12.PubMedGoogle Scholar
  20. 20.
    Hall, D. H. (1995) Electron microscopy and 3D image reconstruction, in Caenorhabditis elegans: Modern Biological Analysis of an Organism (H. F. Epstein and D. C. Shakes, eds.), vol. 48. Academic Press, New York, pp. 395–436.CrossRefGoogle Scholar
  21. 21.
    Ward, S., Thomson, N., White, J. G., and Brenner, S. (1975) Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J. Comp. Neurol. 160, 313–338.CrossRefPubMedGoogle Scholar
  22. 22.
    White, J. G., Southgate, E., Thomson, J. N., and Brenner, S. (1976) The structure of the ventral nerve cord of Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. Biol. Sci. 275, 327–348.CrossRefGoogle Scholar
  23. 23.
    White, J. G., Southgate, E., Thomson, J. N., and Brenner, S. (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. Biol. 314, 1–340.CrossRefGoogle Scholar
  24. 24.
    Jones, J. T. and Gwynn, I. (1991) Method for rapid fixation and dehydration of nematode tissue for transmission electron microscopy. J. Microsc. 164, 43–51.Google Scholar
  25. 25.
    Paupard, M. C., Miller, A., Grant, B., Hirsh, D., and Hall, D. H. (2001) Immuno-EM localization of GFP-tagged yolk proteins in C. elegans using microwave fixation. J. Histochem. Cytochem. 49, 949–956.PubMedGoogle Scholar
  26. 26.
    Subramaniam, S. and Milne, J. L. (2004) Three-dimensional electron microscopy at molecular resolution. Annu. Rev. Biophys. Biomol. Struct. 33, 141–155.CrossRefPubMedGoogle Scholar
  27. 27.
    Sartori Blanc, N., Studer, D., Ruhl, K., and Dubochet, J. (1998) Electron beam-induced changes in vitreous sections of biological samples. J. Microsc. 192, 194–201.CrossRefPubMedGoogle Scholar
  28. 28.
    Leapman, R. D. (2004) Novel techniques in electron microscopy. Curr. Opin. Neurobiol. 14, 591–598.CrossRefPubMedGoogle Scholar
  29. 29.
    Hasty, D. L. and Hay, E. D. (1978) Freeze-fracture studies of the developing cell surface. J. Cell Biol. 78, 756–768.CrossRefPubMedGoogle Scholar
  30. 30.
    Al-Amoudi, A., Norlen, L. P. O., and Dubochet, J. (2004) Cryo-electron microscopy of vitreous sections of native biological cells and tissues. J. Struct. Biol. 148, 131–135.CrossRefPubMedGoogle Scholar
  31. 31.
    Richter, T., Biel, S., Sattler, M., Wenck, H., Wittern, K., Wiesendanger, R., and Wepf, R. (2007) Pros and cons: cryo-electron microscopic evaluation of block faces versus cryo-sections from frozen-hydrated skin specimens prepared by different techniques. J. Microsc. 225, 109–207.CrossRefGoogle Scholar
  32. 32.
    Deerinck, T. J., Martone, M. E., Lev-Ram, V., Green, D. P., Tsien, R. Y., Spector, D. L., Huang, S., and Ellisman, M. H. (1994) Fluorescence photooxidation with eosin: a method for high resolution immunolocalization and in situ hybridization detection for light and electron microscopy. J. Cell Biol. 126, 901–910.CrossRefPubMedGoogle Scholar
  33. 33.
    Nisman, R., Dellaire, G., Ren, Y., Li, R., and Bazett-Jones, D. P. (2004) Application of quantum dots as probes for correlative fluorescence, conventional, and energy-filtered transmission electron microscopy. J. Histochem. Cytochem. 52, 13–18.PubMedGoogle Scholar
  34. 34.
    Gaietta, G., Deerinck, T., Adams, S., Bouwer, J., Tour, O., Laird, D., Sosinsky, G., Tsien, R., and Ellisman, M. (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296, 503–507.CrossRefPubMedGoogle Scholar
  35. 35.
    Selkirk, M. E., Yazdanbakhsh, M., Freedman, D., Blaxter, M. L., Cookson, E., Jenkins, R. E., and Williams, S. A. (1991) A proline-rich structural protein of the surface sheath of larval Brugia filarial nematode parasites. J. Biol. Chem. 266, 11002–11008.PubMedGoogle Scholar
  36. 36.
    Shelton, C. A. and Bowerman, B. (1996) Time-dependent responses to glp-1–mediated inductions in early C. elegans embryos. Development 122, 2043– 2050.PubMedGoogle Scholar
  37. 37.
    Mohler, W. A. and Squirrell, J. M. (2000) Multiphoton imaging of embryonic development, in Imaging Neurons: A Laboratory Manual (A. Konnerth, ed.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 21.1–21.11.Google Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Star Ems
    • 1
  • William A. Mohler
    • 1
  1. 1.Department of Genetics and Developmental BiologyUniversity of Connecticut Health CenterFarmington

Personalised recommendations