Skip to main content

Ultrastructural Imaging of Cell Fusion in Caenorhabditis elegans

  • Protocol
Cell Fusion

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 475))

  • 2176 Accesses

Summary

Caenorhabditis elegans is a well-established model system particularly suited for studying cell–cell fusion because of its highly predictable and rapid development and its known cell lineage. This chapter focuses on understanding the ultrastructural components of cell fusion through the use of transmission electron microscopy (TEM). Published TEM studies have described the initial demonstration of syncytial cells in the worm, the vesiculation of the bilayers between cells during widening of the normal fusion aperture, and the appearance of microfusion intermediates in the membranes of cells with fusion-defective mutations. Capturing events observed in embryos on the light microscope and preserving the integrity of cellular membranes for examination by TEM require some special considerations that differ from many ultrastructural studies of cells. The principles of different techniques for TEM and details of protocols that have been used to investigate cell fusion in the nematode are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreasen, A. and Ren, H. (2003) Extending the resolution of light microscopy and electron microscopy digitized images with reference to cellular changes after in vivo low oxygen exposure. J. Neurosci. Methods 122, 157–170.

    Article  PubMed  Google Scholar 

  2. Frey, T. G., Perkins, G. A., and Ellisman, M. H. (2006) Electron tomography of membrane-bound cellular organelles. Annu. Rev. Biophys. Biomol. Struct. 35, 199–224.

    Article  CAS  PubMed  Google Scholar 

  3. Koster, A. J. and Klumperman, J. (2003) Electron microscopy in cell biology: integrating structure and function. Nat. Rev. Mol. Cell Biol. 4, SS6–SS10.

    Google Scholar 

  4. Sulston, J. E., Schierenberg, E., White, J. G., and Thomson, J. N. (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119.

    Article  CAS  PubMed  Google Scholar 

  5. Albertson, D. G. and Thomson, J. N. (1976) The pharynx of C. elegans. Philos. Trans. R. Soc. Lond. Biol. 275, 299–325.

    Article  CAS  Google Scholar 

  6. Nguyen, C. Q., Hall, D. H., Yang, Y., and Fitch, D. H. (1999) Morphogenesis of the Caenorhabditis elegans male tail tip. Dev. Biol. 207, 86–106.

    Article  CAS  PubMed  Google Scholar 

  7. Sharma-Kishore, R., White, J. G., Southgate, E., and Podbilewicz, B. (1999) Formation of the vulva in Caenorhabditis elegans: a paradigm for organogenesis. Development 126, 691–699.

    CAS  PubMed  Google Scholar 

  8. Newman, A. P., White, J. G., and Sternberg, P. W. (1996) Morphogenesis of the C. elegans hermaphrodite uterus. Development 122, 3617–3623.

    CAS  PubMed  Google Scholar 

  9. Mohler, W. A., Simske, J. S., Williams-Masson, E. M., Hardin, J. D., and White, J. G. (1998) Dynamics and ultrastructure of developmental cell fusions in the Caenorhabditis elegans hypodermis. Curr. Biol. 8, 1087–1090.

    Article  CAS  PubMed  Google Scholar 

  10. Shemer, G., Suissa, M., Kolotuev, I., Nguyen, K., Hall, D., and Podbilewicz, B. (2004) EFF-1 Is sufficient to initiate and execute tissue-specific cell fusion in C. elegans. Curr. Biol. 14, 1587–1591.

    Article  CAS  PubMed  Google Scholar 

  11. Gattegno, T., Mittal, A., Valansi, C., Nguyen, K. C., Hall, D. H., Chernomordik, L. V. , and Podbilewicz. B. (2007) Genetic control of fusion pore expansion in the epidermis of Caenorhabditis elegans. Mol. Biol. Cell 18, 1153–1166.

    Article  CAS  PubMed  Google Scholar 

  12. del Campo, J. J., Opoku-Serebuoh, E., Isaacson, A. B., Scranton, V. L., Tucker, M., Han, M., and Mohler, W. A. (2005) Fusogenic activity of EFF-1 is regulated via dynamic localization in fusing somatic cells of C. elegans. Curr. Biol. 15, 413–423.

    Article  PubMed  Google Scholar 

  13. Nolan, S., Cowan, A. E., Koppel, D., Jin, H., and Grote, E. (2006) Fus1 regulates the opening and expansion of fusion pores between mating yeast. Mol. Biol. Cell 17, 2439–2450.

    Article  CAS  PubMed  Google Scholar 

  14. Doberstein, S. K., Fetter, R. D., Mehta, A. Y. , and Goodman, C. S. (1997) Genetic analysis of myoblast fusion: blown fuse is required for progression beyond the prefusion complex. J. Cell Biol. 136, 1249–1261.

    Article  CAS  PubMed  Google Scholar 

  15. Lucic, V., Forster, F., and Baumeister, W. (2005) Structural studies by electron tomography: from cells to molecules. Annu. Rev. Biochem. 74, 833–865.

    Article  CAS  PubMed  Google Scholar 

  16. Priess, J. R. and Hirsh, D. I. (1986) C. elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo. Dev. Biol. 117, 156–173.

    Article  CAS  PubMed  Google Scholar 

  17. Kirkham, M., Müller-Reichert, T., Oegema, K., Grill, S., and Hyman, A. (2003) SAS-4 is a C. elegans centriolar protein that controls centrosome size. Cell 112, 575–587.

    Article  CAS  PubMed  Google Scholar 

  18. Rappleye, C. A., Paredez, A. R., Smith, C. W., McDonald, K. L., and Aroian, R. V. (1999) The coronin-like protein POD-1 is required for anterior–posterior axis formation and cellular architecture in the nematode Caenorhabditis elegans. Genes Dev. 13, 2838–2851.

    Article  CAS  PubMed  Google Scholar 

  19. Rostaing, P., Weimer, R. M., Jorgensen, E. M., Triller, A., and Bessereau J. L. (2004) Preservation of immunoreactivity and fine structure of adult C. elegans tissues using high-pressure freezing. J. Histochem. Cytochem. 52, 1–12.

    CAS  PubMed  Google Scholar 

  20. Hall, D. H. (1995) Electron microscopy and 3D image reconstruction, in Caenorhabditis elegans: Modern Biological Analysis of an Organism (H. F. Epstein and D. C. Shakes, eds.), vol. 48. Academic Press, New York, pp. 395–436.

    Chapter  Google Scholar 

  21. Ward, S., Thomson, N., White, J. G., and Brenner, S. (1975) Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J. Comp. Neurol. 160, 313–338.

    Article  CAS  PubMed  Google Scholar 

  22. White, J. G., Southgate, E., Thomson, J. N., and Brenner, S. (1976) The structure of the ventral nerve cord of Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. Biol. Sci. 275, 327–348.

    Article  CAS  Google Scholar 

  23. White, J. G., Southgate, E., Thomson, J. N., and Brenner, S. (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. Biol. 314, 1–340.

    Article  Google Scholar 

  24. Jones, J. T. and Gwynn, I. (1991) Method for rapid fixation and dehydration of nematode tissue for transmission electron microscopy. J. Microsc. 164, 43–51.

    Google Scholar 

  25. Paupard, M. C., Miller, A., Grant, B., Hirsh, D., and Hall, D. H. (2001) Immuno-EM localization of GFP-tagged yolk proteins in C. elegans using microwave fixation. J. Histochem. Cytochem. 49, 949–956.

    CAS  PubMed  Google Scholar 

  26. Subramaniam, S. and Milne, J. L. (2004) Three-dimensional electron microscopy at molecular resolution. Annu. Rev. Biophys. Biomol. Struct. 33, 141–155.

    Article  CAS  PubMed  Google Scholar 

  27. Sartori Blanc, N., Studer, D., Ruhl, K., and Dubochet, J. (1998) Electron beam-induced changes in vitreous sections of biological samples. J. Microsc. 192, 194–201.

    Article  CAS  PubMed  Google Scholar 

  28. Leapman, R. D. (2004) Novel techniques in electron microscopy. Curr. Opin. Neurobiol. 14, 591–598.

    Article  CAS  PubMed  Google Scholar 

  29. Hasty, D. L. and Hay, E. D. (1978) Freeze-fracture studies of the developing cell surface. J. Cell Biol. 78, 756–768.

    Article  CAS  PubMed  Google Scholar 

  30. Al-Amoudi, A., Norlen, L. P. O., and Dubochet, J. (2004) Cryo-electron microscopy of vitreous sections of native biological cells and tissues. J. Struct. Biol. 148, 131–135.

    Article  CAS  PubMed  Google Scholar 

  31. Richter, T., Biel, S., Sattler, M., Wenck, H., Wittern, K., Wiesendanger, R., and Wepf, R. (2007) Pros and cons: cryo-electron microscopic evaluation of block faces versus cryo-sections from frozen-hydrated skin specimens prepared by different techniques. J. Microsc. 225, 109–207.

    Article  Google Scholar 

  32. Deerinck, T. J., Martone, M. E., Lev-Ram, V., Green, D. P., Tsien, R. Y., Spector, D. L., Huang, S., and Ellisman, M. H. (1994) Fluorescence photooxidation with eosin: a method for high resolution immunolocalization and in situ hybridization detection for light and electron microscopy. J. Cell Biol. 126, 901–910.

    Article  CAS  PubMed  Google Scholar 

  33. Nisman, R., Dellaire, G., Ren, Y., Li, R., and Bazett-Jones, D. P. (2004) Application of quantum dots as probes for correlative fluorescence, conventional, and energy-filtered transmission electron microscopy. J. Histochem. Cytochem. 52, 13–18.

    CAS  PubMed  Google Scholar 

  34. Gaietta, G., Deerinck, T., Adams, S., Bouwer, J., Tour, O., Laird, D., Sosinsky, G., Tsien, R., and Ellisman, M. (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296, 503–507.

    Article  CAS  PubMed  Google Scholar 

  35. Selkirk, M. E., Yazdanbakhsh, M., Freedman, D., Blaxter, M. L., Cookson, E., Jenkins, R. E., and Williams, S. A. (1991) A proline-rich structural protein of the surface sheath of larval Brugia filarial nematode parasites. J. Biol. Chem. 266, 11002–11008.

    CAS  PubMed  Google Scholar 

  36. Shelton, C. A. and Bowerman, B. (1996) Time-dependent responses to glp-1–mediated inductions in early C. elegans embryos. Development 122, 2043– 2050.

    CAS  PubMed  Google Scholar 

  37. Mohler, W. A. and Squirrell, J. M. (2000) Multiphoton imaging of embryonic development, in Imaging Neurons: A Laboratory Manual (A. Konnerth, ed.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 21.1–21.11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Ems, S., Mohler, W.A. (2008). Ultrastructural Imaging of Cell Fusion in Caenorhabditis elegans . In: Chen, E.H. (eds) Cell Fusion. Methods in Molecular Biology™, vol 475. Humana Press. https://doi.org/10.1007/978-1-59745-250-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-250-2_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-911-6

  • Online ISBN: 978-1-59745-250-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics