Skip to main content

Optical Imaging of Cell Fusion and Fusion Proteins in C aenorhabditis elegans

  • Protocol
Cell Fusion

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 475))

Summary

Cell fusion is a very dynamic process in which the entire membrane and cellular contents of two or more cells merge into one. Strategies developed to understand the component processes that make up a full fusion event require imaging to be performed over a range of space and time scales. These strategies must cover detection of nanometer-sized pores, monitoring cytoplasmic diffusion and the dynamic localization of proteins that induce fusion competence, and three-dimensional reconstruction of multinucleated cells. Caenorhabditis elegans' small size, predictable development, and transparent body make this organism optimal for microscopic investigations. In this chapter, focus is placed on light microscopy techniques that have been used thus far to study developmental fusion events in C. elegans and the insights that have been gained from them. There is also a general overview of the developmental timing of the cell fusion events. Additionally, several protocols are described for preparing both fixed and live specimens at various developmental stages of C. elegans for examination via optical microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Podbilewicz, B. and White, J. (1994) Cell fusions in the developing epithelia of C. elegans. Dev. Biol. 161, 408–424.

    Article  CAS  PubMed  Google Scholar 

  2. Sulston, J., Schierenberg, E., White, J., and Thomson, J. (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119.

    Article  CAS  PubMed  Google Scholar 

  3. Sulston, J. and Horvitz, H. (1977) Postembryonic cell lineages of the nematode Caenorhabditis elegans. Dev. Biol. 56, 110–156.

    Article  CAS  PubMed  Google Scholar 

  4. Shemer, G. and Podbilewicz, B. (2000) Fusomorphogenesis: cell fusion in organ formation. Dev. Dyn. 218, 30–51.

    Article  CAS  PubMed  Google Scholar 

  5. Newman, A. P., White, J. G., and Sternberg, P. W. (1996) Morphogenesis of the C. elegans hermaphrodite uterus. Development 122, 3617–3623.

    CAS  PubMed  Google Scholar 

  6. Kornfeld, K. (1997) Vulval development in Caenorhabditis elegans. Trends Genet. 13, 55–61.

    Article  CAS  PubMed  Google Scholar 

  7. Sharma-Kishore, R., White, J., Southgate, E., and Podbilewicz, B. (1999) Formation of the vulva in Caenorhabditis elegans: a paradigm for organogenesis. Development 126, 691–699.

    CAS  PubMed  Google Scholar 

  8. Nguyen, C. Q., Hall, D. H., Yang, Y., and Fitch, D.H. (1999) Morphogenesis of the Caenorhabditis elegans male tail tip. Dev. Biol. 207, 86–106.

    Article  CAS  PubMed  Google Scholar 

  9. Mohler, W. A., Shemer, G., del Campo, J. J., Valansi, C., Opoku-Serebuoh, E., Scranton, V. , Assaf, N., White, J. G., and Podbilewicz, B. (2002) The type I membrane protein EFF-1 is essential for developmental cell fusion. Dev. Cell 2, 355–362.

    Article  CAS  PubMed  Google Scholar 

  10. Shemer, G., Suissa, M., Kolotuev, I., Nguyen, K., Hall, D., and Podbilewicz, B. (2004) EFF-1 is sufficient to initiate and execute tissue-specific cell fusion in C. elegans. Curr. Biol. 14, 1587–1591.

    Article  CAS  PubMed  Google Scholar 

  11. del Campo, J. J., Opoku-Serebuoh, E., Isaacson, A. B., Scranton, V. L., Tucker, M., Han, M., and Mohler, W.A. (2005) Fusogenic activity of EFF-1 is regulated via dynamic localization in fusing somatic cells of C. elegans. Curr. Biol. 15, 413–423.

    Article  CAS  PubMed  Google Scholar 

  12. Podbilewicz, B., Leikina, E., Sapir, A., Valansi, C., Suissa, M., Shemer, G., and Chernomordik, L. (2006) The C. elegans developmental fusogen EFF-1 mediates homotypic fusion in heterologous cells and in vivo. Dev. Cell 11, 471–481.

    Article  CAS  PubMed  Google Scholar 

  13. Sapir, A., Choi, J., Leikina, E., Avinoam, O., Valansi, C., Chernomordik, L. V., Newman, A. P., and Podbilewicz, B. (2007) AFF-1, a FOS-1-regulated fusogen, mediates fusion of the anchor cell in C. elegans. Dev. Cell 12, 683–698.

    Article  CAS  PubMed  Google Scholar 

  14. Inoue, S. and Spring, K. (1997) Video Microscopy: The Fundamentals, 2nd ed. Plenum Publishing Corp, New York.

    Google Scholar 

  15. Sulston, J. and White, J. (1980) Regulation and cell autonomy during postembry-onic development of Caenorhabditis elegans. Dev. Biol. 78, 577–597.

    Article  CAS  PubMed  Google Scholar 

  16. Alper, S. and Kenyon, C. (2002) The zinc finger protein REF-2 functions with the Hox genes to inhibit cell fusion in the ventral epidermis of C. elegans. Development 129, 3335–3348.

    CAS  PubMed  Google Scholar 

  17. Alper, S., Kenyon, C. (2001). REF-1, a protein with two bHLH domains, alters the pattern of cell fusion in C. elegans by regulating Hox protein activity. Development 128, 1793–1804.

    CAS  PubMed  Google Scholar 

  18. Koh, K. and Rothman, J. (2001) ELT-5 and ELT-6 are required continuously to regulate epidermal seam cell differentiation and cell fusion in C. elegans. Development 128, 2867–2880.

    CAS  PubMed  Google Scholar 

  19. Shemer, G. and Podbilewicz, B. (2002) LIN-39/Hox triggers cell division and represses EFF-1/fusogen–dependent vulval cell fusion. Genes Dev. 16, 3136–3141.

    Article  CAS  PubMed  Google Scholar 

  20. Mohler, W. A., Simske, J. S., Williams-Masson, E. M., Hardin, J. D., and White, J. G. (1998) Dynamics and ultrastructure of developmental cell fusions in the Caenorhabditis elegans hypodermis. Curr. Biol. 8, 1087–1090.

    Article  CAS  PubMed  Google Scholar 

  21. White, J. G., Amos, W. B., and Fordham, M. (1987) An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J. Cell Biol. 105, 41–48.

    Article  CAS  PubMed  Google Scholar 

  22. Gattegno, T., Mittal, A., Valansi, C., Nguyen, K. C., Hall, D. H., Chernomordik, L. V., and Podbilewicz. B. (2007) Genetic control of fusion pore expansion in the epidermis of Caenorhabditis elegans. Mol. Biol. Cell 18, 1153–1166.

    Article  CAS  PubMed  Google Scholar 

  23. Cassata, G., Shemer, G., Morandi, P., Donhauser, R., Podbilewicz, B., and Baumeister, R. (2005) ceh-16/engrailed patterns the embryonic epidermis of Caenorhabditis elegans. Development 132, 739–749.

    Article  CAS  PubMed  Google Scholar 

  24. Kontani, K., Moskowitz, I., and Rothman, J. (2005) Repression of cell–cell fusion by components of the C. elegans vacuolar ATPase complex. Dev. Cell 8, 787–794.

    Article  CAS  PubMed  Google Scholar 

  25. Wang, E., Babbey, C. M., and Dunn, K. W. (2005) Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems. J. Microsc. 218, 148–159.

    Article  CAS  PubMed  Google Scholar 

  26. Jansen, L. E., Black, B. E., Foltz, D. R., and Cleveland, D. W. (2007) Propagation of centromeric chromatin requires exit from mitosis. J. Cell Biol. 176, 795–805.

    Article  CAS  PubMed  Google Scholar 

  27. Maddox, P. S., Portier, N., Desai, A., and Oegema, K. (2006) Molecular analysis of mitotic chromosome condensation using a quantitative time-resolved fluorescence microscopy assay. Proc. Natl. Acad. Sci. U.S.A. 103, 15097–15102.

    Article  CAS  PubMed  Google Scholar 

  28. Denk, W., Strickler, J., and Webb, W. (1990) Two-photon laser scanning fluorescence microscopy. Science 248, 73–76.

    Article  CAS  PubMed  Google Scholar 

  29. Mohler, W. and Isaacson, A., (2005) Imaging embryonic development in Caenorhabditis elegans, in Imaging in Neuroscience and Development (R. Yuste and A. Konnerth, eds.) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 119–124.

    Google Scholar 

  30. Mohler, W. and White, J. (1998) Multiphoton laser scanning microscopy for four-dimensional analysis of Caenorhabditis elegans embryonic development. Optics Express 3, 325–331.

    Article  CAS  PubMed  Google Scholar 

  31. Bao, Z., Murray, J., Boyle, T., Ooi., S., Sandel, M., and Waterston, R. (2006) Automated cell lineage tracing in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 103, 2707–2712.

    Article  CAS  PubMed  Google Scholar 

  32. Lee, J. Y. and Goldstein, B. (2003). Mechanisms of cell positioning during C. elegans gastrulation. Development 130, 307–320.

    Article  CAS  PubMed  Google Scholar 

  33. O'Connell, K. F., Caron, C., Kopish, K. R., Hurd, D. H., Kemphues, K.J., Li, Y., and White, J. G. (2001) The C. elegans zyg-1 gene encodes a novel regulator of centrosome duplication with distinct maternal and paternal roles in the embryo. Cell 105, 547–558.

    Article  PubMed  Google Scholar 

  34. Gerlich, D. and Ellenberg, J. (2003) 4D imaging to assay complex dynamics in live specimens. Nat. Cell Biol. 5(Suppl), S14–S19.

    Google Scholar 

  35. Nolan, S., Cowan, A.E., Koppel, D., Jin, H., and Grote, E. (2006) Fus1 regulates the opening and expansion of fusion pores between mating yeast. Mol. Biol. Cell 17, 2439–2450.

    Article  CAS  PubMed  Google Scholar 

  36. Duerr, J. S. (2006) Immunohistochemistry, in WormBook (The C. elegans Research Community, ed.), doi/10.1895/wormbook.1.105.1. http://www.worm-book.org

  37. Finney, M. and Ruvkun, G. (1990) The unc-86 gene product couples cell lineage and cell identity in C. elegans. Cell 63, 895–905.

    Article  CAS  PubMed  Google Scholar 

  38. Miller, D. M. and Shakes, D. C. (1995) Immunofluorescence microscopy. Methods Cell Biol. 48, 365–394.

    Article  CAS  PubMed  Google Scholar 

  39. Shaham, S. (January 2, 2006) Methods in cell biology, in WormBook (The C. elegans Research Community, ed.). doi/10.1895/wormbook. http://www.worm-book.org.

  40. Lackner, M. R., Nurrish, S. J., and Kaplan, J. M. (1999) Facilitation of synaptic transmission by EGL-30 Gq and EGL-8 PLCß: DAG binding to UNC-13 is required to stimulate acetylcholine release. Neuron 24, 335–346.

    Article  CAS  PubMed  Google Scholar 

  41. Chao, M. Y., Komatsu, H., Fukuto, H. S., Dionne, H. M., and Hart, A. C. (2004) Feeding status and serotonin rapidly and reversibly modulate a Caenorhabditis elegans chemosensory circuit. Proc. Natl. Acad. Sci. U.S.A. 101, 15512–15517.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Ems, S., Mohler, W.A. (2008). Optical Imaging of Cell Fusion and Fusion Proteins in C aenorhabditis elegans . In: Chen, E.H. (eds) Cell Fusion. Methods in Molecular Biology™, vol 475. Humana Press. https://doi.org/10.1007/978-1-59745-250-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-250-2_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-911-6

  • Online ISBN: 978-1-59745-250-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics