Cell Fusion pp 165-196 | Cite as

Cell Fusion Assays for Yeast Mating Pairs

  • Eric Grote
Part of the Methods in Molecular Biology™ book series (MIMB, volume 475)


Yeast mating provides an accessible genetic system for the discovery of fundamental mechanisms in eukaryotic cell fusion. Although aspects of yeast mating related to pheromone signaling and polarized growth have been intensively investigated, fusion itself is poorly understood. This chapter describes methods for measuring the overall efficiency of yeast cell fusion and for monitoring various stages of the fusion process including cell wall remodeling, plasma membrane fusion, and nuclear fusion.

Key Words

Cell fusion mating membrane fusion cell wall remodeling karyogamy 



This work was supported by a Research Scholar Award from the American Cancer Society. Scott Nolan participated in the development of the karyogamy, vacuole fusion, and permeance assays.


  1. 1.
    Haber, J. E. (1998) Mating-type gene switching in Saccharomyces cerevisiae. Annu. Rev. Genet. 32, 561–599.CrossRefPubMedGoogle Scholar
  2. 2.
    Cosma, M. P. (2004) Daughter-specific repression of Saccharomyces cerevisiae HO: Ash1 is the commander. EMBO Rep. 5 (10), 953–957.CrossRefPubMedGoogle Scholar
  3. 3.
    Elion, E. A. (2000) Pheromone response, mating and cell biology. Curr. Opin. Microbiol. 3 (6), 573–581.CrossRefPubMedGoogle Scholar
  4. 4.
    Bardwell, L. (2005) A walk-through of the yeast mating pheromone response pathway. Peptides 26 (2), 339–350.CrossRefPubMedGoogle Scholar
  5. 5.
    White, J. M. and Rose, M. D. (2001) Yeast mating: getting close to membrane merger. Curr. Biol. 11 (1), R16–R20.CrossRefPubMedGoogle Scholar
  6. 6.
    Chen, E. H., Grote, E., Mohler, W., and Vignery, A. (2007) Cell–cell fusion. FEBS Lett. 581 (11), 2181–2193.CrossRefPubMedGoogle Scholar
  7. 7.
    Rose MD. (1996) Nuclear fusion in the yeast Saccharomyces cerevisiae. Annu. Rev. Cell Dev. Biol. 12, 663–695.CrossRefPubMedGoogle Scholar
  8. 8.
    Weisman, L. S. and Wickner, W. (1988) Intervacuole exchange in the yeast zygote: a new pathway in organelle communication. Science 241 (4865), 589–591.CrossRefPubMedGoogle Scholar
  9. 9.
    Roy, A., Lu, C. F., Marykwas, D. L., Lipke, P. N., and Kurjan, J. (1991) The AGA1 product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoprotein a-agglutinin. Mol. Cell. Biol. 11 (8), 4196–4206.PubMedGoogle Scholar
  10. 10.
    Heiman, M. G. and Walter, P. (2000) Prm1p, a pheromone-regulated multispan-ning membrane protein, facilitates plasma membrane fusion during yeast mating. J. Cell Biol. 151 (3), 719–730.CrossRefPubMedGoogle Scholar
  11. 11.
    Erdman, S., Lin, L., Malczynski, M., and Snyder, M. (1998) Pheromone-regulated genes required for yeast mating differentiation. J. Cell Biol. 140 (3), 461–483.CrossRefPubMedGoogle Scholar
  12. 12.
    Trueheart, J., Boeke, J. D., and Fink, G. R. (1987) Two genes required for cell fusion during yeast conjugation: evidence for a pheromone-induced surface protein. Mol. Cell. Biol. 7 (7), 2316–2328.PubMedGoogle Scholar
  13. 13.
    Sprague, G. F., Jr. (1991) Assay of yeast mating reaction. Methods Enzymol. 194, 77–93.CrossRefPubMedGoogle Scholar
  14. 14.
    Vida, T. A. and Emr, S. D. (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J. Cell Biol. 128 (5), 779–792.CrossRefPubMedGoogle Scholar
  15. 15.
    Jin, H., Carlile, C., Nolan, S., and Grote, E. (2004) Prm1 prevents contact-dependent lysis of yeast mating pairs. Eukaryot. Cell 3 (6), 1664–1673.CrossRefPubMedGoogle Scholar
  16. 16.
    Nolan, S., Cowan, A. E., Koppel, D. E., Jin, H., and Grote, E. (2006) FUS1 Regulates the opening and expansion of fusion pores between mating yeast. Mol. Biol. Cell 17 (5), 2439–2450.CrossRefPubMedGoogle Scholar
  17. 17.
    Maddox, P., Chin, E., Mallavarapu, A., Yeh, E., Salmon, E.D., and Bloom, K. (1999) Microtubule dynamics from mating through the first zygotic division in the budding yeast Saccharomyces cerevisiae. J. Cell Biol. 144 (5), 977–987.CrossRefPubMedGoogle Scholar
  18. 18.
    Berlin, V. , Brill, J. A., Trueheart, J., Boeke, J. D., and Fink, G. R. (1991) Genetic screens and selections for cell and nuclear fusion mutants. Methods Enzymol. 194, 774–792.CrossRefPubMedGoogle Scholar
  19. 19.
    Tang, F., Kauffman, E. J., Novak, J. L., Nau, J. J., Catlett, N. L., and Weisman, L. S. (2003) Regulated degradation of a class V myosin receptor directs movement of the yeast vacuole. Nature 422 (6927), 87–92.CrossRefPubMedGoogle Scholar
  20. 20.
    Stefan, C. J. and Blumer, K. J. (1999) A syntaxin homolog encoded by VAM3 mediates down-regulation of a yeast G protein–coupled receptor. J. Biol. Chem. 274 (3), 1835–1841.CrossRefPubMedGoogle Scholar
  21. 21.
    Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N., Palmer, A. E., and Tsien, R. Y. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22 (12), 1567–1572.CrossRefPubMedGoogle Scholar
  22. 22.
    Schiestl, R. H. and Gietz, R. D. (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16 (5–6), 339–346.CrossRefPubMedGoogle Scholar
  23. 23.
    Gietz RD, Woods RA. (2006) Yeast transformation by the LiAc/SS carrier DNA/ PEG method. Methods Mol. Biol. 313, 107–120.PubMedGoogle Scholar
  24. 24.
    Aguilar, P. S., Engel, A., and Walter, P. (2006) The plasma membrane proteins Prm1 and Fig1 ascertain fidelity of membrane fusion during yeast mating. Mol. Biol. Cell 18 (2), 547–556.CrossRefPubMedGoogle Scholar
  25. 25.
    Cormack, B. P., Bertram, G., Egerton, M., Gow, N. A., Falkow, S., and Brown, A. J. (1997) Yeast-enhanced green fluorescent protein (yEGFP)a reporter of gene expression in Candida albicans. Microbiology 143 (Pt 2), 303–311.CrossRefPubMedGoogle Scholar
  26. 26.
    Ribas, J. C. and Wickner, R. B. (1998) The Gag domain of the Gag-Pol fusion protein directs incorporation into the L-A double-stranded RNA viral particles in Saccharomyces cerevisiae. J Biol. Chem. 273 (15), 9306–9311.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Eric Grote
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyJohns Hopkins Bloomberg School of Public HealthBaltimore

Personalised recommendations