Yeast Mating

A Model System for Studying Cell and Nuclear Fusion
  • Casey A. Ydenberg
  • Mark D. Rose
Part of the Methods in Molecular Biology™ book series (MIMB, volume 475)


Haploid yeast cells mate to form a zygote, whose progeny are diploid cells. A fundamentally sexual event, related to fertilization, yeast mating nevertheless exhibits cytological properties that appear similar to somatic cell fusion. A large collection of mutations that lead to defects in various stages of mating, including cell fusion, has allowed a detailed dissection of the overall pathway. Recent advances in imaging methods, together with powerful methods of genetic analysis, make yeast mating a superb platform for investigation of cell fusion. An understanding of yeast cell fusion will provide insight into fundamental mechanisms of cell signaling, cell polarization, and membrane fusion.

Key Words

Conjugation mating Saccharomyces cerevisiae pheromone cell polarity karyogamy 


  1. 1.
    Bardwell, L. (2005) A walk-through of the yeast mating pheromone response pathway. Peptides 26, 339–350.CrossRefPubMedGoogle Scholar
  2. 2.
    Marsh, L. and Rose, M. D. (1997) The pathway of cell and nuclear fusion during mating in S. cerevisiae, in The Molecular and Cellular Biology of the Yeast Saccharomyces (J. R. Pringle, J. R. Broach, and E. W. Jones, eds.), vol. 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 827–888.Google Scholar
  3. 3.
    Molk, J. N. and Bloom, K. (2006) Microtubule dynamics in the budding yeast mating pathway. J. Cell Sci. 119, 3485–3490.CrossRefPubMedGoogle Scholar
  4. 4.
    Rose, M. D. (1996) Nuclear fusion in the yeast Saccharomyces cerevisiae. Annu. Rev. Cell Dev. Biol. 12, 663–695.CrossRefGoogle Scholar
  5. 5.
    White, J. M. and Rose, M. D. (2001) Yeast mating: getting close to membrane merger. Curr. Biol. 11, R16–R20.CrossRefPubMedGoogle Scholar
  6. 6.
    Segall, J. E. (1993) Polarization of yeast cells in spatial gradients of alpha mating factor. Proc. Natl. Acad. Sci. U.S.A. 90, 8332–8336.CrossRefPubMedGoogle Scholar
  7. 7.
    Casamayor, A. and Snyder, M. (2002) Bud-site selection and cell polarity in budding yeast. Curr. Opin. Microbiol. 5, 179–186.CrossRefPubMedGoogle Scholar
  8. 8.
    Butty, A. C., Pryciak, P. M., Huang, L. S., Herskowitz, I., and Peter, M. (1998) The role of Far1p in linking the heterotrimeric G protein to polarity establishment proteins during yeast mating. Science 282, 1511–1516.CrossRefPubMedGoogle Scholar
  9. 9.
    Lipke, P. N. and Kurjan, J. (1992) Sexual agglutination in budding yeasts: structure, function, and regulation of adhesion glycoproteins. Microbiol. Rev. 56, 180–194.PubMedGoogle Scholar
  10. 10.
    Zhao, H., Shen, Z. M., Kahn, P. C., and Lipke, P. N. (2001) Interaction of alpha-agglutinin and a-agglutinin, Saccharomyces cerevisiaesexual cell adhesion molecules. J. Bacteriol. 183, 2874–2880.CrossRefPubMedGoogle Scholar
  11. 11.
    Gammie, A. E. Brizzio, V., and Rose, M. D. (1998) Distinct morphological phe-notypes of cell fusion mutants. Mol. Biol. Cell 9, 1395–1410.PubMedGoogle Scholar
  12. 12.
    Heiman, M. G. and Walter, P. (2000) Prm1p, a pheromone-regulated multispan-ning membrane protein, facilitates plasma membrane fusion during yeast mating. J. Cell Biol. 151, 719–730.CrossRefPubMedGoogle Scholar
  13. 13.
    Meluh, P. B. and Rose, M. D. (1990) KAR3, a kinesin-related gene required for yeast nuclear fusion. Cell 60, 1029–1041.CrossRefPubMedGoogle Scholar
  14. 14.
    Miller, R. K. and Rose, M. D. (1998) Kar9p is a novel cortical protein required for cytoplasmic microtubule orientation in yeast. J. Cell Biol. 140, 377–390.CrossRefPubMedGoogle Scholar
  15. 15.
    Chen, E. H. and Olson, E. N. (2004) Towards a molecular pathway for myoblast fusion in Drosophila. Trends Cell Biol. 14, 452–460.CrossRefPubMedGoogle Scholar
  16. 16.
    Doberstein, S. K., Fetter, R. D., Mehta, A. Y., and Goodman, C. S. (1997) Genetic analysis of myoblast fusion: blown fuse is required for progression beyond the prefusion complex. J. Cell Biol. 136, 1249–1261.CrossRefPubMedGoogle Scholar
  17. 17.
    Mackay, V. and Manney, T. R. (1974) Mutations affecting sexual conjugation and related processes in Saccharomyces cerevisiae. I. Isolation and phenotypic characterization of nonmating mutants. Genetics 76, 255–271.PubMedGoogle Scholar
  18. 18.
    Wilson, K. L. and Herskowitz, I. (1987) STE16, a new gene required for pheromone production by a cell of Saccharomyces cerevisiae. Genetics 115, 441–449.PubMedGoogle Scholar
  19. 19.
    Berlin, V., Brill, J. A., Trueheart, J., Boeke, J. D., and Fink, G. R. (1991) Genetic screens and selections for cell and nuclear fusion mutants. Methods Enzymol. 194, 774–792.CrossRefPubMedGoogle Scholar
  20. 20.
    Kurihara, L. J., Beh, C. T., Latterich, M., Schekman, R., and Rose, M. D. (1994) Nuclear congression and membrane fusion: two distinct events in the yeast karyogamy pathway. J. Cell Biol. 126, 911–923.CrossRefPubMedGoogle Scholar
  21. 21.
    Trueheart, J., Boeke, J. D., and Fink, G. R. (1987) Two genes required for cell fusion during yeast conjugation: evidence for a pheromone-induced surface protein. Mol. Cell. Biol. 7, 2316–2328.PubMedGoogle Scholar
  22. 22.
    Conde, J. and Fink, G. R. (1976) A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc. Natl. Acad. Sci. U.S.A. 73, 3651–3655.CrossRefPubMedGoogle Scholar
  23. 23.
    Rose, M. D., Price, B. R., and Fink, G. R. (1986)Saccharomyces cerevisiae nuclear fusion requires prior activation by alpha factor. Mol. Cell. Biol. 6, 3490–3497.PubMedGoogle Scholar
  24. 24.
    Elion, E. A. (2000) Pheromone response, mating and cell biology. Curr. Opin. Microbiol. 3, 573–581.CrossRefPubMedGoogle Scholar
  25. 25.
    Naider, F. and Becker, J. M. (2004) The alpha-factor mating pheromone of Saccharomyces cerevisiae: a model for studying the interaction of peptide hormones and G protein–coupled receptors. Peptides 25, 1441–1463.CrossRefPubMedGoogle Scholar
  26. 26.
    Gustin, M. C., Albertyn, J., Alexander, M., and Davenport, K. (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62, 1264–1300.PubMedGoogle Scholar
  27. 27.
    Breitkreutz, A., Boucher, L., and Tyers, M. (2001) MAPK specificity in the yeast pheromone response independent of transcriptional activation. Curr. Biol. 11, 1266–1271.CrossRefPubMedGoogle Scholar
  28. 28.
    Madhani, H. D. and Fink, G. R. (1997) Combinatorial control required for the specificity of yeast MAPK signaling. Science 275, 1314–1317.CrossRefPubMedGoogle Scholar
  29. 29.
    Bao, M. Z., Schwartz, M. A., Cantin, G. T., Yates, J. R., 3rd, and Madhani, H. D. (2004) Pheromone-dependent destruction of the Tec1 transcription factor is required for MAP kinase signaling specificity in yeast. Cell 119, 991–1000.CrossRefPubMedGoogle Scholar
  30. 30.
    Chou, S., Huang, L., and Liu, H. (2004) Fus3-regulated Tec1 degradation through SCFCdc4 determines MAPK signaling specificity during mating in yeast. Cell 119, 981–990.CrossRefPubMedGoogle Scholar
  31. 31.
    Lahav, R., Gammie, A., Tavazoie, S., and Rose, M. D. (2007) Role of transcription factor Kar4 in regulating downstream events in the Saccharomyces cerevisiae pheromone response pathway. Mol. Cell. Biol. 27, 818–829.CrossRefPubMedGoogle Scholar
  32. 32.
    Dohlman, H. G., Song, J., Ma, D., Courchesne, W. E., and Thorner, J. (1996) Sst2, a negative regulator of pheromone signaling in the yeast Saccharomyces cerevisiae: expression, localization, and genetic interaction and physical association with Gpa1 (the G-protein alpha subunit). Mol. Cell. Biol. 16, 5194–5209.PubMedGoogle Scholar
  33. 33.
    Chang, F. and Herskowitz, I. (1990) Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2. Cell 63, 999–1011.CrossRefPubMedGoogle Scholar
  34. 34.
    Peter, M., Gartner, A., Horecka, J., Ammerer, G., and Herskowitz, I. (1993) FAR1 links the signal transduction pathway to the cell cycle machinery in yeast. Cell 73, 747–760.CrossRefPubMedGoogle Scholar
  35. 35.
    Gartner, A., Jovanovic, A., Jeoung, D. I., Bourlat, S., Cross, F. R., and Ammerer, G. (1998) Pheromone-dependent G1 cell cycle arrest requires Far1 phosphorylation, but may not involve inhibition of Cdc28-Cln2 kinase, in vivo. Mol. Cell. Biol. 18, 3681–3691.PubMedGoogle Scholar
  36. 36.
    Elion, E. A., Brill, J. A., and Fink, G. R. (1991) FUS3 represses CLN1 and CLN2 and in concert with KSS1 promotes signal transduction. Proc. Natl. Acad. Sci. U.S.A. 88, 9392–9396.CrossRefPubMedGoogle Scholar
  37. 37.
    Elion, E. A., Grisafi, P. L., and Fink, G. R. (1990) FUS3 encodes a cdc2+/CDC28-related kinase required for the transition from mitosis into conjugation. Cell 60, 649–664.CrossRefPubMedGoogle Scholar
  38. 38.
    Barkai, N., Rose, M. D., and Wingreen, N. S. (1998) Protease helps yeast find mating partners. Nature 396, 422–423.CrossRefPubMedGoogle Scholar
  39. 39.
    Vallier, L. G., Segall, J. E., and Snyder, M. (2002) The alpha-factor receptor C-terminus is important for mating projection formation and orientation in Saccharomyces cerevisiae. Cell Motil. Cytoskeleton 53, 251–266.CrossRefPubMedGoogle Scholar
  40. 40.
    Nern, A. and Arkowitz, R. A. (2000) Nucleocytoplasmic shuttling of the Cdc42p exchange factor Cdc24p. J. Cell Biol. 148, 1115–1122.CrossRefPubMedGoogle Scholar
  41. 41.
    Shimada, Y., Gulli, M. P., and Peter, M. (2000) Nuclear sequestration of the exchange factor Cdc24 by Far1 regulates cell polarity during yeast mating. Nat. Cell Biol. 2, 117–124.CrossRefPubMedGoogle Scholar
  42. 42.
    Nern, A. and Arkowitz, R. A. (1999) A Cdc24p-Far1p-Gbetagamma protein complex required for yeast orientation during mating. J. Cell Biol. 144, 1187–1202.CrossRefPubMedGoogle Scholar
  43. 43.
    Nern, A. and Arkowitz, R. A. (2000) G proteins mediate changes in cell shape by stabilizing the axis of polarity. Mol. Cell 5, 853–864.CrossRefPubMedGoogle Scholar
  44. 44.
    Matheos, D., Metodiev, M., Muller, E., Stone, D., and Rose, M. D. (2004) Pheromone-induced polarization is dependent on the Fus3p MAPK acting through the formin Bni1p. J. Cell Biol. 165, 99–109.CrossRefPubMedGoogle Scholar
  45. 45.
    Metodiev, M. V., Matheos, D., Rose, M. D., and Stone, D. E. (2002) Regulation of MAPK function by direct interaction with the mating-specific Galpha in yeast. Science 296, 1483–1486.CrossRefPubMedGoogle Scholar
  46. 46.
    Guo, B., Styles, C. A., Feng, Q., and Fink, G. R. (2000) A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc. Natl. Acad. Sci. U.S.A. 97, 12158–12163.CrossRefPubMedGoogle Scholar
  47. 47.
    Erdman, S., Lin, L., Malczynski, M., and Snyder, M. (1998) Pheromone-regulated genes required for yeast mating differentiation. J. Cell Biol. 140, 461–483.CrossRefPubMedGoogle Scholar
  48. 48.
    Zhang, M., Bennett, D., and Erdman, S. E. (2002) Maintenance of mating cell integrity requires the adhesin Fig2p. Eukaryot. Cell 1, 811–822.CrossRefPubMedGoogle Scholar
  49. 49.
    Cid, V. J., Duran, A., del Rey, F., Snyder, M. P., Nombela, C., and Sanchez, M. (1995) Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol. Rev. 59, 345–386.PubMedGoogle Scholar
  50. 50.
    Lesage, G. and Bussey, H. (2006) Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70, 317–343.CrossRefGoogle Scholar
  51. 51.
    Orlean, P. (1997) Biogenesis of yeast wall and surface components, in The Molecular and Cellular Biology of the Yeast Saccharomyces (J. R. Pringle, J. R. Broach, and E. W. Jones, eds.), vol. 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. pp. 229–362.Google Scholar
  52. 52.
    Cappellaro, C., Mrsa, V., and Tanner, W. (1998) New potential cell wall gluca-nases of Saccharomyces cerevisiae and their involvement in mating. J. Bacteriol. 180, 5030–5037.PubMedGoogle Scholar
  53. 53.
    Fitch, P. G., Gammie, A. E., Lee, D. J., de Candal, V. B., and Rose, M. D. (2004) Lrg1p Is a Rho1 GTPase-activating protein required for efficient cell fusion in yeast?Genetics 168, 733–746.CrossRefPubMedGoogle Scholar
  54. 54.
    Drgonova, J., Drgon, T., Tanaka, K., Kollar, R., Chen, G. C., Ford, R. A., Chan, C. S., Takai, Y., and Cabib, E. (1996) Rho1p, a yeast protein at the interface between cell polarization and morphogenesis. Science 272, 277–279.CrossRefPubMedGoogle Scholar
  55. 55.
    Qadota, H., Python, C. P., Inoue, S. B., Arisawa, M., Anraku, Y. , Zheng, Y. , Watanabe, T., Levin, D. E., and Ohya, Y. (1996) Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3-beta-glucan synthase. Science 272, 279–281.CrossRefPubMedGoogle Scholar
  56. 56.
    Watanabe, D., Abe, M., and Ohya, Y. (2001) Yeast Lrg1p acts as a specialized RhoGAP regulating 1,3-beta-glucan synthesis. Yeast 18, 943–951.CrossRefPubMedGoogle Scholar
  57. 57.
    McCaffrey, G., Clay, F. J., Kelsay, K., and Sprague, G. F. Jr. (1987) Identification and regulation of a gene required for cell fusion during mating of the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 7, 2680–2690.PubMedGoogle Scholar
  58. 58.
    Brizzio, V., Gammie, A. E., and Rose, M. D. (1998) Rvs161p interacts with Fus2p to promote cell fusion in Saccharomyces cerevisiae. J. Cell Biol. 141, 567–584.CrossRefPubMedGoogle Scholar
  59. 59.
    Nelson, B., Parsons, A. B., Evangelista, M., Schaefer, K., Kennedy, K., Ritchie, S., Petryshen, T. L., and Boone, C. (2004) Fus1p interacts with components of the Hog1p mitogen-activated protein kinase and Cdc42p morphogenesis signaling pathways to control cell fusion during yeast mating. Genetics 166, 67–77.CrossRefPubMedGoogle Scholar
  60. 60.
    Philips, J. and Herskowitz, I. (1997) Osmotic balance regulates cell fusion during mating in Saccharomyces cerevisiae. J. Cell Biol. 138, 961–974.CrossRefGoogle Scholar
  61. 61.
    Santos, B., Duran, A., and Valdivieso, M. H. (1997)CHS5, a gene involved in chitin synthesis and mating in Saccharomyces cerevisiae. Mol. Cell. Biol. 17, 2485–2496.PubMedGoogle Scholar
  62. 62.
    Santos, B. and Snyder, M. (1997) Targeting of chitin synthase 3 to polarized growth sites in yeast requires Chs5p and Myo2p. J. Cell Biol. 136, 95–110.CrossRefPubMedGoogle Scholar
  63. 63.
    Santos, B. and Snyder, M. (2003) Specific protein targeting during cell differentiation: polarized localization of Fus1p during mating depends on Chs5p in Saccharomyces cerevisiae. Eukaryot. Cell 2, 821–825.Google Scholar
  64. 64.
    Dorer, R., Boone, C., Kimbrough, T., Kim, J., and Hartwell, L. H. (1997) Genetic analysis of default mating behavior in Saccharomyces cerevisiae. Genetics 146, 39–55.PubMedGoogle Scholar
  65. 65.
    Barale, S., McCusker, D., and Arkowitz, R. A. (2004) The exchange factor Cdc24 is required for cell fusion during yeast mating. Eukaryot. Cell 3, 1049–1061.CrossRefPubMedGoogle Scholar
  66. 66.
    Barale, S., McCusker, D., and Arkowitz, R. A. (2006) Cdc42p GDP/GTP cycling is necessary for efficient cell fusion during yeast mating. Mol. Biol. Cell 17, 2824–2838.CrossRefPubMedGoogle Scholar
  67. 67.
    Bagnat, M. and Simons, K. (2002) Cell surface polarization during yeast mating. Proc. Natl. Acad. Sci. U.S.A. 99, 14183–14188.CrossRefPubMedGoogle Scholar
  68. 68.
    Proszynski, T. J., Klemm, R., Bagnat, M., Gaus, K., and Simons, K. (2006) Plasma membrane polarization during mating in yeast cells. J. Cell Biol. 173, 861–866.CrossRefPubMedGoogle Scholar
  69. 69.
    Brizzio, V. , Gammie, A. E., Nijbroek, G., Michaelis, S., and Rose, M. D. (1996) Cell fusion during yeast mating requires high levels of a-factor mating phero-mone. J. Cell Biol. 135, 1727–1739.CrossRefPubMedGoogle Scholar
  70. 70.
    Heiman, M. G., Engel, A., and Walter, P. (2007) The Golgi-resident protease Kex2 acts in conjunction with Prm1 to facilitate cell fusion during yeast mating. J. Cell Biol. 176, 209–222.CrossRefPubMedGoogle Scholar
  71. 71.
    Muller, E. M., Mackin, N. A., Erdman, S. E., and Cunningham, K. W. (2003) Fig1p facilitates Ca2+ influx and cell fusion during mating of Saccharomyces cerevisiae. J. Biol. Chem. 278, 38461–38469.CrossRefGoogle Scholar
  72. 72.
    Aguilar, P. S., Engel, A., and Walter, P. (2007) The plasma membrane proteins Prm1 and Fig1 ascertain fidelity of membrane fusion during yeast mating. Mol. Biol. Cell. 18, 547–556.CrossRefPubMedGoogle Scholar
  73. 73.
    Jin, H., Carlile, C., Nolan, S., and Grote, E. (2004) Prm1 prevents contact-dependent lysis of yeast mating pairs. Eukaryot. Cell 3, 1664–1673.Google Scholar
  74. 74.
    Nolan, S., Cowan, A. E., Koppel, D. E., Jin, H., and Grote, E. (2006) FUS1 regulates the opening and expansion of fusion pores between mating yeast. Mol. Biol. Cell 17, 2439–2450.CrossRefPubMedGoogle Scholar
  75. 75.
    Berlin, V. , Styles, C. A., and Fink, G. R. (1990) BIK1, a protein required for microtubule function during mating and mitosis in Saccharomyces cerevisiae, colocalizes with tubulin. J. Cell Biol. 111, 2573–2586.CrossRefPubMedGoogle Scholar
  76. 76.
    Huffaker, T. C., Thomas, J. H., and Botstein, D. (1988) Diverse effects of beta-tubulin mutations on microtubule formation and function. J. Cell Biol. 106, 1997–2010.CrossRefPubMedGoogle Scholar
  77. 77.
    Page, B. D., and Snyder, M. (1992) CIK1: a developmentally regulated spindle pole body-associated protein important for microtubule functions in Saccharomyces cerevisiae. Genes Dev. 6, 1414–1429.CrossRefPubMedGoogle Scholar
  78. 78.
    Schwartz, K., Richards, K., and Botstein, D. (1997) BIM1 encodes a microtubule-binding protein in yeast. Mol. Biol. Cell 8, 2677–2691.PubMedGoogle Scholar
  79. 79.
    Kurihara, L. J., Stewart, B. G., Gammie, A. E., and Rose, M. D. (1996) Kar4p, a karyogamy-specific component of the yeast pheromone response pathway. Mol. Cell. Biol. 16, 3990–4002.PubMedGoogle Scholar
  80. 80.
    Vallen, E. A., Hiller, M. A., Scherson, T. Y. , and Rose, M. D. (1992) Separate domains of KAR1 mediate distinct functions in mitosis and nuclear fusion. J. Cell Biol. 117, 1277–1287.CrossRefPubMedGoogle Scholar
  81. 81.
    Maddox, P., Chin, E., Mallavarapu, A., Yeh, E., Salmon, E. D., and Bloom, K. (1999) Microtubule dynamics from mating through the first zygotic division in the budding yeast Saccharomyces cerevisiae. J. Cell Biol. 144, 977–987.CrossRefPubMedGoogle Scholar
  82. 82.
    Maddox, P. S., Stemple, J. K., Satterwhite, L., Salmon, E. D., and Bloom, K. (2003) The minus end–directed motor Kar3 is required for coupling dynamic microtubule plus ends to the cortical shmoo tip in budding yeast. Curr. Biol. 13, 1423–1428.CrossRefPubMedGoogle Scholar
  83. 83.
    Molk, J. N., Salmon, E. D., and Bloom, K. (2006) Nuclear congression is driven by cytoplasmic microtubule plus end interactions in S. cerevisiae. J. Cell Biol. 172, 27–39.CrossRefPubMedGoogle Scholar
  84. 84.
    Korinek, W. S., Copeland, M. J., Chaudhuri, A., and Chant, J. (2000) Molecular linkage underlying microtubule orientation toward cortical sites in yeast. Science 287, 2257–2259.CrossRefPubMedGoogle Scholar
  85. 85.
    Lee, L., Tirnauer, J. S., Li, J., Schuyler, S. C., Liu, J. Y. , and Pellman, D. (2000) Positioning of the mitotic spindle by a cortical-microtubule capture mechanism. Science 287, 2260–2262.CrossRefPubMedGoogle Scholar
  86. 86.
    Miller, R. K., Cheng, S. C., and Rose, M. D. (2000) Bim1p/Yeb1p mediates the Kar9p-dependent cortical attachment of cytoplasmic microtubules. Mol. Biol. Cell 11, 2949–2959.PubMedGoogle Scholar
  87. 87.
    Hwang, E., Kusch, J., Barral, Y., and Huffaker, T. C. (2003) Spindle orientation in Saccharomyces cerevisiae depends on the transport of microtubule ends along polarized actin cables. J. Cell Biol. 161, 483–488.CrossRefPubMedGoogle Scholar
  88. 88.
    Miller, R. K., Matheos, D., and Rose, M. D. (1999) The cortical localization of the microtubule orientation protein, Kar9p, is dependent upon actin and proteins required for polarization. J. Cell Biol. 144, 963–975.CrossRefPubMedGoogle Scholar
  89. 89.
    Moore, J. K., D'Silva, S., and Miller, R. K. (2006) The CLIP-170 homologue Bik1p promotes the phosphorylation and asymmetric localization of Kar9p. Mol. Biol. Cell 17, 178–191.CrossRefPubMedGoogle Scholar
  90. 90.
    Byers, B. and Goetsch, L. (1975) Behavior of spindles and spindle plaques in the cell cycle and conjugation of Saccharomyces cerevisiae. J. Bacteriol. 124, 511–523.PubMedGoogle Scholar
  91. 91.
    Pereira, G., Grueneberg, U., Knop, M., and Schiebel, E. (1999) Interaction of the yeast gamma-tubulin complex-binding protein Spc72p with Kar1p is essential for microtubule function during karyogamy. EMBO J. 18, 4180–4195.CrossRefPubMedGoogle Scholar
  92. 92.
    Sproul, L. R., Anderson, D. J., Mackey, A. T., Saunders, W. S., and Gilbert, S. P. (2005) Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends. Curr. Biol. 15, 1420–1427.CrossRefPubMedGoogle Scholar
  93. 93.
    Endow, S. A., Kang, S. J., Satterwhite, L. L., Rose, M. D., Skeen, V. P., and Salmon, E. D. (1994) Yeast Kar3 is a minus-end microtubule motor protein that destabilizes microtubules preferentially at the minus ends. EMBO J. 13, 2708– 2713.PubMedGoogle Scholar
  94. 94.
    Melloy, P., Shen, S., White, E., McIntosh, J. R., and Rose, M. D. (2007) Nuclear fusion during yeast mating occurs by a three-step pathway. J. Cell. Biol. 179, 695–670.CrossRefGoogle Scholar
  95. 95.
    Kim, J., Bortz, E., Zhong, H., Leeuw, T., Leberer, E., Vershon, A. K., and Hirsch, J. P. (2000) Localization and signaling of G(beta) subunit Ste4p are controlled by a-factor receptor and the a-specific protein Asg7p. Mol. Cell. Biol. 20, 8826–8835.CrossRefPubMedGoogle Scholar
  96. 96.
    Rivers, D. M. and Sprague, G. F. Jr. (2003) Autocrine activation of the pheromone response pathway in matalpha2-cells is attenuated by SST2- and ASG7-dependent mechanisms. Mol. Genet. Genomics 270, 225–233.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Casey A. Ydenberg
    • 1
  • Mark D. Rose
    • 1
  1. 1.Department of Molecular BiologyPrinceton UniversityPrinceton

Personalised recommendations