Skip to main content

Genetics of Wnt Signaling During Early Mammalian Development

  • Protocol
Wnt Signaling

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 468))

Abstract

Proper cell—cell communication is necessary to orchestrate the cell fate determination, proliferation, movement, and differentiation that occurs during the development of a complex, multicellular organism. Members of the Wnt family of secreted signaling molecules regulate these processes in virtually every embryonic tissue and during the homeostatic maintenance of adult tissues. Mammalian genetic studies have been particularly useful in illustrating the specific roles that Wnt signaling pathways play in embryonic development, and in the etiology of diseases such as cancer. This chapter will largely focus on the functional roles that Wnts, signaling through the Wnt/ -catenin pathway, play during early mammalian development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clevers, H. (2006) Wnt/beta-catenin signaling in development and disease.Cell 127, 469–480.

    Article  CAS  PubMed  Google Scholar 

  2. Reya, T. and Clevers, H. (2005) Wnt signalling in stem cells and cancer.Nature 434, 843–850.

    Article  CAS  PubMed  Google Scholar 

  3. Nusse, R. and Varmus, H. E. (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome.Cell 31, 99–109.

    Article  CAS  PubMed  Google Scholar 

  4. Kimelman, D. and Xu, W. (2006) beta-cat-enin destruction complex: insights and questions from a structural perspective.Oncogene 25, 7482–7491.

    Article  CAS  PubMed  Google Scholar 

  5. Stadeli, R., Hof fmans, R., and Basler, K. (2006) Transcription under the control of nuclear Arm/beta-catenin.Curr Biol 16, R378–385.

    Article  PubMed  Google Scholar 

  6. Willert, K. and Jones, K. A. (2006) Wnt signaling: is the party in the nucleus?Genes Dev 20, 1394–1404.

    Article  CAS  PubMed  Google Scholar 

  7. Veeman, M. T., Axelrod, J. D., and Moon, R. T. (2003) A second canon. Functions and mechanisms of beta-catenin-independ-ent Wnt signaling.Dev Cell 5, 367–377.

    Article  CAS  PubMed  Google Scholar 

  8. Tao, Q., Yokota, C., Puck, H., Kofron, M., Birsoy, B., Yan, D., Asashima, M., Wylie, C. C., Lin, X., and Heasman, J. (2005) Maternal wnt11 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos.Cell 120, 857–871.

    Article  CAS  PubMed  Google Scholar 

  9. Mikels, A. J. and Nusse, R. (2006) Purified Wnt5a protein activates or inhibits beta-cat-enin-TCF signaling depending on receptor context.PLoS Biol 4, e115.

    Article  PubMed  Google Scholar 

  10. Mikels, A. J. and Nusse, R. (2006) Wnts as ligands: processing, secretion and reception.Oncogene 25, 7461–7468.

    Article  CAS  PubMed  Google Scholar 

  11. van Amerongen, R. and Berns, A. (2006) Knockout mouse models to study Wnt signal transduction.Trends Genet 22, 678–689.

    Article  PubMed  Google Scholar 

  12. Rossant, J. and Tam, P. P. (2004) Emerging asymmetry and embryonic patterning in early mouse development.Dev Cell 7, 155–164.

    Article  CAS  PubMed  Google Scholar 

  13. Mohamed, O. A., Dufort, D., and Clarke, H. J. (2004) Expression and estradiol regulation of Wnt genes in the mouse blastocyst identify a candidate pathway for embryo-maternal signaling at implantation.Biol Reprod 71, 417–424.

    Article  CAS  PubMed  Google Scholar 

  14. Kemp, C., Willems, E., Abdo, S., Lambiv, L., and Leyns, L. (2005) Expression of all Wnt genes and their secreted antagonists during mouse blastocyst and postimplantation development.Dev Dyn 233, 1064–1075.

    Article  CAS  PubMed  Google Scholar 

  15. Hamatani, T., Carter, M. G., Sharov, A. A., and Ko, M. S. (2004) Dynamics of global gene expression changes during mouse preimplantation development.Dev Cell 6, 117–131.

    Article  CAS  PubMed  Google Scholar 

  16. Wang, Q. T., Piotrowska, K., Ciemerych, M. A., Milenkovic, L., Scott, M. P., Davis, R. W., and Zernicka-Goetz, M. (2004) A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo.Dev Cell 6, 133–144.

    Article  CAS  PubMed  Google Scholar 

  17. Mohamed, O. A., Clarke, H. J., and Dufort, D. (2004) Beta-catenin signaling marks the prospective site of primitive streak formation in the mouse embryo.Dev Dyn 231, 416–424.

    Article  CAS  PubMed  Google Scholar 

  18. Barolo, S. (2006) Transgenic Wnt/TCF pathway reporters: all you need is Lef?Onco-gene 25, 7505–7511.

    Article  CAS  Google Scholar 

  19. Maretto, S., Cordenonsi, M., Dupont, S., Braghetta, P., Broccoli, V., Hassan, A. B., Volpin, D., Bressan, G. M., and Piccolo, S. (2003) Mapping Wnt/beta-catenin signaling during mouse development and in colorectal tumors.Proc Natl Acad Sci U S A 100, 3299–3304.

    Article  CAS  PubMed  Google Scholar 

  20. Merrill, B. J., Pasolli, H. A., Polak, L., Rendl, M., Garcia-Garcia, M. J., Anderson, K. V., and Fuchs, E. (2004) Tcf3: a tran-scriptional regulator of axis induction in the early embryo.Development 131, 263–274.

    Article  CAS  PubMed  Google Scholar 

  21. Nakaya, M. A., Biris, K., Tsukiyama, T., Jaime, S., Rawls, J. A., and Yamaguchi, T. P. (2005) Wnt3a links left-right determination with segmentation and anteropos-terior axis elongation.Development 132, 5425–5436.

    Article  CAS  PubMed  Google Scholar 

  22. Mohamed, O. A., Jonnaert, M., Labelle-Dumais, C., Kuroda, K., Clarke, H. J., and Dufort, D. (2005) Uterine Wnt/beta-cat-enin signaling is required for implantation.Proc Natl Acad Sci U S A 102, 8579–8584.

    Article  CAS  PubMed  Google Scholar 

  23. Marikawa, Y. (2006) Wnt/beta-catenin signaling and body plan formation in mouse embryos.Semin Cell Dev Biol 17, 175–184.

    Article  CAS  PubMed  Google Scholar 

  24. Yamaguchi, T. P. (2001) Heads or tails: Wnts and anterior-posterior patterning.Curr Biol 11, R713–724.

    Article  CAS  PubMed  Google Scholar 

  25. Perea-Gomez, A., Meilhac, S. M., Pio-trowska-Nitsche, K., Gray, D., Collignon, J., and Zernicka-Goetz, M. (2007) Region-alization of the mouse visceral endoderm as the blastocyst transforms into the egg cylinder.BMC Dev Biol 7, 96.

    Article  PubMed  Google Scholar 

  26. Copp, A. J. (1979) Interaction between inner cell mass and trophectoderm of the mouse blastocyst. II. The fate of the polar trophectoderm.J Embryol Exp Morphol 51, 109–120.

    CAS  PubMed  Google Scholar 

  27. Srinivas, S., Rodriguez, T., Clements, M., Smith, J. C., and Beddington, R. S. (2004) Active cell migration drives the unilateral movements of the anterior visceral endo-derm.Development 131, 1157–1164.

    Article  CAS  PubMed  Google Scholar 

  28. Thomas, T., Yamagishi, H., Overbeek, P. A., Olson, E. N., and Srivastava, D. (1998) The bHLH factors, dHAND and eHAND, specify pulmonary and systemic cardiac ventricles independent of left-right sidedness.Dev Biol 196, 228–236.

    Article  CAS  PubMed  Google Scholar 

  29. Thomas, P. and Beddington, R. (1996) Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo.Curr Biol 6, 1487–1496.

    Article  CAS  PubMed  Google Scholar 

  30. Rodriguez, T. A., Srinivas, S., Clements, M. P., Smith, J. C., and Beddington, R. S. (2005) Induction and migration of the anterior visceral endoderm is regulated by the extra-embryonic ectoderm.Development 132, 2513–2520.

    Article  CAS  PubMed  Google Scholar 

  31. Huelsken, J., Vogel, R., Brinkmann, V., Erd-mann, B., Birchmeier, C., and Birchmeier, W. (2000) Requirement for beta-catenin in anterior-posterior axis formation in mice.J Cell Biol 148, 567–578.

    Article  CAS  PubMed  Google Scholar 

  32. Brennan, J., Lu, C. C., Norris, D. P., Rodriguez, T. A., Beddington, R. S., and Robertson, E. J. (2001) Nodal signalling in the epiblast patterns the early mouse embryo.Nature 411, 965–969.

    Article  CAS  PubMed  Google Scholar 

  33. Ding, J., Yang, L., Yan, Y. T., Chen, A., Desai, N., Wynshaw-Boris, A., and Shen, M. M. (1998) Cripto is required for correct orientation of the anterior-posterior axis in the mouse embryo.Nature 395, 702–707.

    Article  CAS  PubMed  Google Scholar 

  34. Morkel, M., Huelsken, J., Wakamiya, M., Ding, J., van de Wetering, M., Clevers, H., Taketo, M. M., Behringer, R. R., Shen, M. M., and Birchmeier, W. (2003) Beta-cat-enin regulates Cripto- and Wnt3-dependent gene expression programs in mouse axis and mesoderm formation.Development 130, 6283–6294.

    Article  CAS  PubMed  Google Scholar 

  35. Kimura, C., Yoshinaga, K., Tian, E., Suzuki, M., Aizawa, S., and Matsuo, I. (2000) Visceral endoderm mediates forebrain development by suppressing posteriorizing signals.Dev Biol 225, 304–321.

    Article  CAS  PubMed  Google Scholar 

  36. Perea-Gomez, A., Lawson, K. A., Rhinn, M., Zakin, L., Brulet, P., Mazan, S., and Ang, S. L. (2001) Otx2 is required for visceral endoderm movement and for the restriction of posterior signals in the epiblast of the mouse embryo.Development 128, 753–765.

    CAS  PubMed  Google Scholar 

  37. Kimura-Yoshida, C., Nakano, H., Okamura, D., Nakao, K., Yonemura, S., Belo, J. A., Aizawa, S., Matsui, Y., and Matsuo, I. (2005) Canonical Wnt signaling and its antagonist regulate anterior-posterior axis polarization by guiding cell migration in mouse visceral endoderm.Dev Cell 9, 639–650.

    Article  CAS  PubMed  Google Scholar 

  38. Mukhopadhyay, M., Shtrom, S., Rodriguez-Esteban, C., Chen, L., Tsukui, T., Gomer, L., Dorward, D. W., Glinka, A., Grinberg, A., Huang, S. P., Niehrs, C., Belmonte, J. C., and Westphal, H. (2001) Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse.Dev Cell 1, 423–434.

    Article  CAS  PubMed  Google Scholar 

  39. Liu, P., Wakamiya, M., Shea, M. J., Albre-cht, U., Behringer, R. R., and Bradley, A. (1999) Requirement for Wnt3 in vertebrate axis formation.Nat Genet 22, 361–365.

    Article  CAS  PubMed  Google Scholar 

  40. Popperl, H., Schmidt, C., Wilson, V., Hume, C. R., Dodd, J., Krumlauf, R., and Beddington, R. S. (1997) Misexpression of Cwnt8C in the mouse induces an ectopic embryonic axis and causes a truncation of the anterior neuroectoderm.Development 124, 2997–3005.

    CAS  PubMed  Google Scholar 

  41. Zhou, X., Sasaki, H., Lowe, L., Hogan, B. L., and Kuehn, M. R. (1993) Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation.Nature 361, 543–547.

    Article  CAS  PubMed  Google Scholar 

  42. Conlon, F. L., Lyons, K. M., Takaesu, N., Barth, K. S., Kispert, A., Herrmann, B., and Robertson, E. J. (1994) A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse.Development 120, 1919–1928.

    CAS  PubMed  Google Scholar 

  43. Perea-Gomez, A., Vella, F. D., Shawlot, W., Oulad-Abdelghani, M., Chazaud, C., Meno, C., Pfister, V., Chen, L., Robertson, E., Hamada, H., Behringer, R. R., and Ang, S. L. (2002) Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks.Dev Cell 3, 745–756.

    Article  CAS  PubMed  Google Scholar 

  44. Ben-Haim, N., Lu, C., Guzman-Ayala, M., Pescatore, L., Mesnard, D., Bischofberger, M., Naef, F., Robertson, E. J., and Cons-tam, D. B. (2006) The nodal precursor acting via activin receptors induces mesoderm by maintaining a source of its convertases and BMP4.Dev Cell 11, 313–323.

    Article  CAS  PubMed  Google Scholar 

  45. Haegel, H., Larue, L., Ohsugi, M., Fedorov, L., Herrenknecht, K., and Kemler, R. (1995) Lack of beta-catenin affects mouse development at gastrulation.Development 121, 3529–3537.

    CAS  PubMed  Google Scholar 

  46. Shimizu, H., Julius, M. A., Giarre, M., Zheng, Z., Brown, A. M., and Kitajewski, J. (1997) Transformation by Wnt family proteins correlates with regulation of beta-cat-enin.Cell Growth Differ 8, 1349–1358.

    CAS  PubMed  Google Scholar 

  47. Liu, T., Liu, X., Wang, H., Moon, R. T., and Malbon, C. C. (1999) Activation of rat frizzled-1 promotes Wnt signaling and differentiation of mouse F9 teratocarcinoma cells via pathways that require Galpha(q) and Galpha(o) function.J Biol Chem 274, 33539–33544.

    Article  CAS  PubMed  Google Scholar 

  48. Takada, S., Stark, K. L., Shea, M. J., Vassil-eva, G., McMahon, J. A., and McMahon, A. P. (1994) Wnt-3a regulates somite and tail-bud formation in the mouse embryo.Genes Dev 8, 174–189.

    Article  CAS  PubMed  Google Scholar 

  49. Yoshikawa, Y., Fujimori, T., McMahon, A. P., and Takada, S. (1997) Evidence that absence of Wnt-3a signaling promotes neuralization instead of paraxial mesoderm development in the mouse.Dev Biol 183, 234–242.

    Article  CAS  PubMed  Google Scholar 

  50. Greco, T. L., Takada, S., Newhouse, M. M., McMahon, J. A., McMahon, A. P., and Camper, S. A. (1996) Analysis of the vestigial tail mutation demonstrates that Wnt-3a gene dosage regulates mouse axial development.Genes Dev 10, 313–324.

    Article  CAS  PubMed  Google Scholar 

  51. Dunty, W. C., Jr., Biris, K. K., Chalamala-setty, R. B., Taketo, M. M., Lewandoski, M., and Yamaguchi, T. P. (2008) Wnt3a/ -catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation.Development 135, 85–94.

    Article  CAS  PubMed  Google Scholar 

  52. Galceran, J., Hsu, S. C., and Grosschedl, R. (2001) Rescue of a Wnt mutation by an activated form of LEF-1: regulation of maintenance but not initiation of Brachyury expression.Proc Natl Acad Sci U S A 98, 8668–8673.

    Article  CAS  PubMed  Google Scholar 

  53. Galceran, J., Farinas, I., Depew, M. J., Clevers, H., and Grosschedl, R. (1999) Wnt3a−/−-like phenotype and limb deficiency in Lef1(−/−)Tcf1(−/−) mice.Genes Dev 13, 709–717.

    Article  CAS  PubMed  Google Scholar 

  54. Pinson, K. I., Brennan, J., Monkley, S., Avery, B. J., and Skarnes, W. C. (2000) An LDL-receptor-related protein mediates Wnt signalling in mice.Nature 407, 535–538.

    Article  CAS  PubMed  Google Scholar 

  55. Kokubu, C., Heinzmann, U., Kokubu, T., Sakai, N., Kubota, T., Kawai, M., Wahl, M. B., Galceran, J., Grosschedl, R., Ozono, K., and Imai, K. (2004) Skeletal defects in rin-gelschwanz mutant mice reveal that Lrp6 is required for proper somitogenesis and oste-ogenesis.Development 131, 5469–5480.

    Article  CAS  PubMed  Google Scholar 

  56. Arnold, S. J., Stappert, J., Bauer, A., Kis-pert, A., Herrmann, B. G., and Kemler, R. (2000) Brachyury is a target gene of the Wnt/beta-catenin signaling pathway.Mech Dev 91, 249–258.

    Article  CAS  PubMed  Google Scholar 

  57. Aulehla, A., Wehrle, C., Brand-Saberi, B., Kemler, R., Gossler, A., Kanzler, B., and Herrmann, B. G. (2003) Wnt3a plays a major role in the segmentation clock controlling somitogenesis.Dev Cell 4, 395– 406.

    Article  CAS  PubMed  Google Scholar 

  58. Galceran, J., Sustmann, C., Hsu, S. C., Fol-berth, S., and Grosschedl, R. (2004) LEF1-mediated regulation of Delta-like1 links Wnt and Notch signaling in somitogenesis.Genes Dev 18, 2718–2723.

    Article  CAS  PubMed  Google Scholar 

  59. Hofmann, M., Schuster-Gossler, K., Wat-abe-Rudolph, M., Aulehla, A., Herrmann, B. G., and Gossler, A. (2004) WNT signaling, in synergy with T/TBX6, controls Notch signaling by regulating Dll1 expression in the presomitic mesoderm of mouse embryos.Genes Dev 18, 2712–2717.

    Article  CAS  PubMed  Google Scholar 

  60. Yamaguchi, T. P., Takada, S., Yoshikawa, Y., Wu, N., and McMahon, A. P. (1999) T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification.Genes Dev 13, 3185–3190.

    Article  CAS  PubMed  Google Scholar 

  61. Yamaguchi, T. P., Bradley, A., McMahon, A. P., and Jones, S. (1999) A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo.Development 126, 1211–1223.

    CAS  PubMed  Google Scholar 

  62. Qian, D., Jones, C., Rzadzinska, A., Mark, S., Zhang, X., Steel, K. P., Dai, X., and Chen, P. (2007) Wnt5a functions in planar cell polarity regulation in mice.Dev Biol 306, 121–133.

    Article  CAS  PubMed  Google Scholar 

  63. Satoh, W., Gotoh, T., Tsunematsu, Y., Aizawa, S., and Shimono, A. (2006) Sfrp1 and Sfrp2 regulate anteroposterior axis elongation and somite segmentation during mouse embryogenesis.Development 133, 989–999.

    Article  CAS  PubMed  Google Scholar 

  64. Xu, Q., D'Amore, P. A., and Sokol, S. Y. (1998) Functional and biochemical interactions of Wnts with FrzA, a secreted Wnt antagonist.Development 125, 4767–4776.

    CAS  PubMed  Google Scholar 

  65. Dennis, S., Aikawa, M., Szeto, W., d'Amore, P. A., and Papkoff, J. (1999) A secreted frizzled related protein, FrzA, selectively associates with Wnt-1 protein and regulates wnt-1 signaling.J Cell Sci 112(Pt 21), 3815–3820.

    CAS  PubMed  Google Scholar 

  66. Tam, P. P. and Beddington, R. S. (1987) The formation of mesodermal tissues in the mouse embryo during gastrulation and early organogenesis.Development 99, 109–126.

    CAS  PubMed  Google Scholar 

  67. Kinder, S. J., Tsang, T. E., Quinlan, G. A., Hadjantonakis, A. K., Nagy, A., and Tam, P. P. (1999) The orderly allocation of meso-dermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo.Development 126, 4691–4701.

    CAS  PubMed  Google Scholar 

  68. Garcia-Martinez, V. and Schoenwolf, G. C. (1992) Positional control of mesoderm movement and fate during avian gastrulation and neurulation.Dev Dyn 193, 249–256.

    CAS  PubMed  Google Scholar 

  69. Schoenwolf, G. C., Garcia-Martinez, V., and Dias, M. S. (1992) Mesoderm movement and fate during avian gastrulation and neurulation.Dev Dyn 193, 235–248.

    CAS  PubMed  Google Scholar 

  70. Aulehla, A. and Herrmann, B. G. (2004) Segmentation in vertebrates: clock and gradient finally joined.Genes Dev 18, 2060–2067.

    Article  CAS  PubMed  Google Scholar 

  71. Pourquie, O. (2003) The segmentation clock: converting embryonic time into spatial pattern.Science 301, 328–330.

    Article  CAS  PubMed  Google Scholar 

  72. Chapman, D. L. and Papaioannou, V. E. (1998) Three neural tubes in mouse embryos with mutations in the T-box gene Tbx6.Nature 391, 695–697.

    Article  CAS  PubMed  Google Scholar 

  73. Chapman, D. L., Garvey, N., Hancock, S., Alexiou, M., Agulnik, S. I., Gibson-Brown, J. J., Cebra-Thomas, J., Bollag, R. J., Silver, L. M., and Papaioannou, V. E. (1996) Expression of the T-box family genes, Tbx1-Tbx5, during early mouse development.Dev Dyn 206, 379–390.

    Article  CAS  PubMed  Google Scholar 

  74. Chapman, D. L., Cooper-Morgan, A., Har-relson, Z., and Papaioannou, V. E. (2003) Critical role for Tbx6 in mesoderm specification in the mouse embryo.Mech Dev 120, 837–847.

    Article  CAS  PubMed  Google Scholar 

  75. White, P. H., Farkas, D. R., and Chapman, D. L. (2005) Regulation of Tbx6 expression by Notch signaling.Genesis 42, 61–70.

    Article  CAS  PubMed  Google Scholar 

  76. Wittler, L., Shin, E. H., Grote, P., Kispert, A., Beckers, A., Gossler, A., Werber, M., and Herrmann, B. G. (2007) Expression of Msgn1 in the presomitic mesoderm is controlled by synergism of WNT signalling and Tbx6.EMBO Rep 8, 784–789.

    Article  CAS  PubMed  Google Scholar 

  77. Yoon, J. K. and Wold, B. (2000) The bHLH regulator pMesogenin1 is required for maturation and segmentation of paraxial meso-derm.Genes Dev 14, 3204–3214.

    Article  CAS  PubMed  Google Scholar 

  78. Hrabe de Angelis, M., McIntyre, J., 2nd, and Gossler, A. (1997) Maintenance of somite borders in mice requires the Delta homologue DII1.Nature 386, 717–721.

    Article  CAS  PubMed  Google Scholar 

  79. Barrantes, I. B., Elia, A. J., Wunsch, K., Hrabe de Angelis, M. H., Mak, T. W., Ros-sant, J., Conlon, R. A., Gossler, A., and de la Pompa, J. L. (1999) Interaction between Notch signalling and Lunatic fringe during somite boundary formation in the mouse.Curr Biol 9, 470–480.

    Article  CAS  PubMed  Google Scholar 

  80. Ikeya, M. and Takada, S. (2001) Wnt-3a is required for somite specification along the anteroposterior axis of the mouse embryo and for regulation of cdx-1 expression.Mech Dev 103, 27–33.

    Article  CAS  PubMed  Google Scholar 

  81. Pilon, N., Oh, K., Sylvestre, J. R., Savory, J. G., and Lohnes, D. (2007) Wnt signaling is a key mediator of Cdx1 expression in vivo.Development 134, 2315–2323.

    Article  CAS  PubMed  Google Scholar 

  82. Krebs, L. T., Iwai, N., Nonaka, S., Welsh, I. C., Lan, Y., Jiang, R., Saijoh, Y., O'Brien, T. P., Hamada, H., and Gridley, T. (2003) Notch signaling regulates left-right asymmetry determination by inducing Nodal expression.Genes Dev 17, 1207–1212.

    Article  CAS  PubMed  Google Scholar 

  83. Raya, A., Kawakami, Y., Rodriguez-Este-ban, C., Buscher, D., Koth, C. M., Itoh, T., Morita, M., Raya, R. M., Dubova, I., Bessa, J. G., de la Pompa, J. L., and Belmonte, J. C. (2003) Notch activity induces Nodal expression and mediates the establishment of left-right asymmetry in vertebrate embryos.Genes Dev 17, 1213–1218.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I apologize to the many authors whose work was omitted due to time and space constraints. I thank Kristin Biris for assistance with manuscript and figure preparation, and members of the laboratory for comments on the manuscript. Work originating in my laboratory was supported by the Intramural Research Program of the National Institutes of Health (NIH), the National Cancer Institute, and the Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yamaguchi, T.P. (2008). Genetics of Wnt Signaling During Early Mammalian Development. In: Vincan, E. (eds) Wnt Signaling. Methods in Molecular Biology™, vol 468. Humana Press. https://doi.org/10.1007/978-1-59745-249-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-249-6_23

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-912-3

  • Online ISBN: 978-1-59745-249-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics