Skip to main content

Assaying Wnt5A-Mediated Invasion in Melanoma Cells

  • Protocol
Wnt Signaling

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 468))

Abstract

Wnt5A has been implicated in melanoma metastasis, and the progression of other cancers including pancreatic, gastric, prostate, and lung cancers. Assays to test motility and invasion include both in vivo assays and in vitro assays. The in vivo assays include the use of tail vein or footpad injections of metastatic cells, and are often laborious and expensive. In vitro invasion assays provide quick readouts that can help to establish conditions that either activate or inhibit melanoma cell motility, and to assess whether the conditions in question are worth translating into an in vivo model. Here we describe two standard methods for assaying motility and invasion in vitro including wound healing assays and Matrigel invasion assays (Boyden chamber assays). In addition, we and several other laboratories have previously shown that melanoma cells require matrix metalloproteinase (MMP)-2 for their invasion, and have recently shown that Wnt5A treatment can increase the levels of this enzyme in melanoma cells, as demonstrated by gelatin zymography. The use of these techniques can help to assess the migratory capacity of melanoma cells in response to Wnt treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fidler, I. J. (2002) Critical determinants of metastasis. Semin Cancer Biol 12, 89–96.

    Article  PubMed  Google Scholar 

  2. Bourguignon, L. Y. (2001) CD44-medi-ated oncogenic signaling and cytoskeleton activation during mammary tumor progression. J Mammary Gland Biol Neoplasia 6, 287–297.

    Article  CAS  PubMed  Google Scholar 

  3. Agnantis, N. J., Goussia, A. C., Batistatou, A., and Stefanou, D. (2004) Tumor markers in cancer patients. An update of their prognostic significance. Part II. In Vivo 18, 481–48.

    CAS  PubMed  Google Scholar 

  4. Steeg, P. S., Ouatas, T., Halverson, D., Palmieri, D., and Salerno, M. (2003) Metastasis suppressor genes: basic biology and potential clinical use. Clin Breast Cancer 4, 51–62.

    Article  CAS  PubMed  Google Scholar 

  5. Hofmann, U. B., Westphal, J. R., Van Muijen, G. N., and Ruiter, D. J. (2000) Matrix metalloproteinases in human melanoma. J Invest Dermatol 115, 337–344.

    Article  CAS  PubMed  Google Scholar 

  6. Hofmann, U. B., Houben, R., Brocker, E. B., and Becker, J. C. (2005) Role of matrix metalloproteinases in melanoma cell invasion. Biochimie 87, 307–314.

    Article  CAS  PubMed  Google Scholar 

  7. Dissanayake, S. K., Wade, M., Johnson, C. E., O'Connell, M. P., Leotlela, P. D., French A. D., et al. (2007) The Wnt5a/Pkc pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors, and initiation of an epithelial to mesenchymal transition. J Biol Chem 282, 17259–17271.

    Article  CAS  PubMed  Google Scholar 

  8. Lewis, T. B., Robison, J. E., Bastien, R., Milash, B., Boucher, K., Samlowski, W. E., et al. (2005) Molecular classification of melanoma using real-time quantitative reverse transcriptase-polymerase chain reaction. Cancer 104, 1678–1686.

    Article  CAS  PubMed  Google Scholar 

  9. Bachmann, I. M., Straume, O., Puntervoll, H. E., Kalvenes, M. B., and Akslen, L. A. (2005) Importance of P-cadherin, beta-catenin, and Wnt5a/frizzled for progression of melanocytic tumors and prognosis in cutaneous melanoma. Clin Cancer Res 11, 8606–8614.

    Article  CAS  PubMed  Google Scholar 

  10. Rodolfo, M., Daniotti, M., and Vallacchi, V. (2004) Genetic progression of metastatic melanoma. Cancer Lett 214, 133–147.

    Article  CAS  PubMed  Google Scholar 

  11. Ripka, S., Konig, A., Buchholz, M., Wagner, M., Sipos, B., Kloppel, G., et al. (2007) WNT5A—target of CUTL1 and potent modulator of tumor cell migration and invasion in pancreatic cancer. Carcinogenesis 28, 1178–1187.

    Article  CAS  PubMed  Google Scholar 

  12. Kurayoshi, M., Oue, N., Yamamoto, H., Kishida, M., Inoue, A., Asahara, T., et al. (2006) Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res 66, 10439–10448.

    Article  CAS  PubMed  Google Scholar 

  13. Stanbrough, M., Bubley, G. J., Ross, K., Golub, T. R., Rubin, M. A., Penning, T. M., et al. (2006) Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 66, 2815–2825.

    Article  CAS  PubMed  Google Scholar 

  14. Huang, C. L., Liu, D., Nakano, J., Ishikawa, S., Kontani, K., Yokomise, H., et al. (2005) Wnt5a expression is associated with the tumor proliferation and the stro-mal vascular endothelial growth factor—an expression in non-small-cell lung cancer. J Clin Oncol 23, 8765–8773.

    Article  PubMed  Google Scholar 

  15. Dejmek, J., Dejmek, A., Safholm, A., Sjolander, A., and Andersson, T. (2005) Wnt-5a protein expression in primary dukes B colon cancers identifies a subgroup of patients with good prognosis. Cancer Res 65, 9142–9146.

    Article  CAS  PubMed  Google Scholar 

  16. Jonsson, M., Dejmek, J., Bendahl, P. O., and Andersson, T. (2002) Loss of Wnt-5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Res 62, 409–416.

    CAS  PubMed  Google Scholar 

  17. Bartolome, R. A., Molina-Ortiz, I., Samaniego, R., Sanchez-Mateos, P., Bustelo, X. R., and Teixido, J. (2006) Activation of Vav/Rho GTPase signaling by CXCL12 controls membrane-type matrix metalloproteinase-dependent melanoma cell invasion.Cancer Res 66, 248–258.

    Article  CAS  PubMed  Google Scholar 

  18. Leotlela, P. D., Wade, M. S., Duray, P. H., Rhode, M. J., Brown, H. F., Rosenthal, D. T., et al. (2006) Claudin-1 overexpression in melanoma is regulated by PKC and contributes to melanoma cell motility. Oncogene 26, 3846–3856.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Michel Bernier and Dr. Paritosh Ghosh for helpful comments on this manuscript. Any data represented in this chapter was generated with the support of funds from the Intramural Research Program of the National Institute on Aging, Baltimore, MD.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

O'Connell, M.P., French, A.D., Leotlela, P.D., Weeraratna, A.T. (2008). Assaying Wnt5A-Mediated Invasion in Melanoma Cells. In: Vincan, E. (eds) Wnt Signaling. Methods in Molecular Biology™, vol 468. Humana Press. https://doi.org/10.1007/978-1-59745-249-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-249-6_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-912-3

  • Online ISBN: 978-1-59745-249-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics