Skip to main content

Profiling RNA Polymerase II Using the Fast Chromatin Immunoprecipitation Method

  • Protocol
  • First Online:
RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 703))

Abstract

The traditional method for determining the transcription rate of a gene, nuclear run-on, is time consuming, laborious, and involves the use of high levels of radio-labeled nucleotides. When combined with measurements of mRNA levels, RNA polymerase II (Pol II) chromatin immunoprecipitation (ChIP) is a simpler alternative to determine the transcription rate of genes. Moreover, this approach provides more information about the transcriptional regulation of a gene than nuclear run-on. The power of the ChIP assay is that it gives a researcher the ability to not only detect a specific protein–DNA interaction in vivo, for instance with Pol II, but also to determine the relative density of factors along genes or the entire genome. Though powerful, the conventional ChIP assay is time consuming (involving 2 days or more) and involves labor intensive steps. With Fast ChIP we simplified the assay to greatly reduce the time and labor involved. The improved assay is especially useful for studies which involve many samples, including the probing of multiple transcriptionally related factors simultaneously and/or looking at transcription events over several time points. Using Fast ChIP, 24 sheared chromatin samples can be processed to yield PCR ready DNA in 5 h.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gariglio, P., Bellard, M., Chambon, P. (1981) Clustering of RNA polymerase-B molecules in the 5’ moiety of the adult beta-globin gene of hen erythrocytes. Nucleic Acids Res 9, 2589–2598.

    Article  CAS  PubMed  Google Scholar 

  2. Srivastava, R. A., Schonfeld, G. (1998) Measurements of rate of transcription in isolated nuclei by nuclear “run-off” assay. Methods Mol Biol 86, 201–207.

    CAS  PubMed  Google Scholar 

  3. Kuo, M. H., Allis, C. D. (1999) In vivo cross-linking and immunoprecipitation for studying dynamic Protein:DNA associations in a chromatin environment. Methods 19, 425–433.

    Article  CAS  PubMed  Google Scholar 

  4. Orlando, V., Strutt, H., Paro, R. (1997) Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11, 205–214.

    Article  CAS  PubMed  Google Scholar 

  5. Sandoval, J., Rodriguez, J. L., Tur, G., Serviddio, G., Pereda, J., Boukaba, A., Sastre, J., Torres, L., Franco, L., Lopez-Rodas, G. (2004) RNAPol-ChIP: a novel application of chromatin immunoprecipitation to the analysis of real-time gene transcription. Nucleic Acids Res 32, e88.

    Article  PubMed  Google Scholar 

  6. Core, L. J., Lis, J. T. (2008) Transcription regulation through promoter-proximal pausing of RNA polymerase II. Science 319, 1791–1792.

    Article  CAS  PubMed  Google Scholar 

  7. Saunders, A., Core, L. J., Lis, J. T. (2006) Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 7, 557–567.

    Article  CAS  PubMed  Google Scholar 

  8. Muse, G. W., Gilchrist, D. A., Nechaev, S., Shah, R., Parker, J. S., Grissom, S. F., Zeitlinger, J., Adelman, K. (2007) RNA polymerase is poised for activation across the genome. Nat Genet 39, 1507–1511.

    Article  CAS  PubMed  Google Scholar 

  9. Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., Wang, Z., Wei, G., Chepelev, I., Zhao, K. (2007) High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837.

    Article  CAS  PubMed  Google Scholar 

  10. Kouzarides, T. (2007) Chromatin modifications and their function. Cell 128, 693–705.

    Article  CAS  PubMed  Google Scholar 

  11. Shilatifard, A. (2004) Transcriptional elongation control by RNA polymerase II: a new frontier. Biochim Biophys Acta 1677, 79–86.

    CAS  PubMed  Google Scholar 

  12. Solomon, M. J., Varshavsky, A. (1985) Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc Natl Acad Sci USA 82, 6470–6474.

    Article  CAS  PubMed  Google Scholar 

  13. Thorne, A. W., Myers, F. A., Hebbes, T. R. (2004) Native chromatin immunoprecipitation. Methods Mol Biol 287, 21–44.

    CAS  PubMed  Google Scholar 

  14. Solomon, M. J., Larsen, P. L., Varshavsky, A. (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53, 937–947.

    Article  CAS  PubMed  Google Scholar 

  15. Nelson, J. D., Denisenko, O., Sova, P., Bomsztyk, K. (2006) Fast chromatin immunoprecipitation assay. Nucleic Acids Res 34, e2.

    Article  PubMed  Google Scholar 

  16. Huebert, D. J., Kamal, M., O‘Donovan, A., Bernstein, B. E. (2006) Genome-wide analysis of histone modifications by ChIP-on-chip. Methods 40, 365–369.

    Article  CAS  PubMed  Google Scholar 

  17. Johnson, D. S., Mortazavi, A., Myers, R. M., Wold, B. (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502.

    Article  CAS  PubMed  Google Scholar 

  18. Chen, R., Weng, L., Sizto, N. C., Osorio, B., Hsu, C. J., Rodgers, R., Litman, D. J. (1984) Ultrasound-accelerated immunoassay, as exemplified by enzyme immunoassay of choriogonadotropin. Clin Chem 30, 1446–1451.

    CAS  PubMed  Google Scholar 

  19. Nelson, J. D., Flanagin, S., Kawata, Y., Denisenko, O., Bomsztyk, K. (2008) Transcription of laminin {gamma}1 chain gene in rat mesangial cells: constitutive and inducible RNA polymerase II recruitment and chromatin states. Am J Physiol Renal Physiol 294, F525–F533.

    Article  CAS  PubMed  Google Scholar 

  20. Zager, R. A., Johnson, A. C., Naito, M., Bomsztyk, K. (2008) Maleate nephrotoxicity: mechanisms of injury and correlates with ischemic/hypoxic tubular cell death. Am J Physiol Renal Physiol 294, F187–F197.

    Article  CAS  PubMed  Google Scholar 

  21. Denisenko, O., Bomsztyk, K. (2008) Epistatic interaction between the K-homology domain protein HEK2 and SIR1 at HMR and telomeres in yeast. J Mol Biol 375, 1178–1187.

    Article  CAS  PubMed  Google Scholar 

  22. Glover-Cutter, K., et al. (2008) RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes. Nat Struct Mol Biol 15(1), 71.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank members of KB lab for valuable discussions of the method. This work was supported by NIH DK45978 and GM45134 (K.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karol Bomsztyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nelson, J., Denisenko, O., Bomsztyk, K. (2011). Profiling RNA Polymerase II Using the Fast Chromatin Immunoprecipitation Method. In: Nielsen, H. (eds) RNA. Methods in Molecular Biology, vol 703. Humana Press. https://doi.org/10.1007/978-1-59745-248-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-248-9_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-913-0

  • Online ISBN: 978-1-59745-248-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics