Skip to main content

Assays for the Identification of Inhibitors Targeting Specific Translational Steps

  • Protocol

Part of the book series: Methods In Molecular Medicine™ ((MIMM,volume 142))

Summary

While bacterial protein synthesis is the target of about half of the known antibiotics, the great structural-functional complexity of the translational machinery still offers remarkable opportunities for identifying novel and specific inhibitors of unexploited targets. We designed a knowledge-based in vitro translation assay to identify inhibitors selectively targeting the bacterial or the yeast translational apparatus, preferentially blocking the early steps of protein synthesis. Using a natural-like, “universal” model mRNA and cell-free extracts prepared from Eschericha coli, Saccharomyces cerevisiae, and HeLa cells, we were able to translate, with comparable yields in the three systems, the immunogenic peptide encoded by this “universal” mRNA. The immuno-enzymatic quantification of the translated peptide in the presence of a potential inhibitor can identify a selective bacterial or fungal inhibitor inactive in the human system. When applied to the high-throughput screening (HTS) of a library of approximately 25,000 natural products, this assay led to the identification of two novel and specific inhibitors of bacterial translation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bottger, E. C., Springer, B., Prammananan, T., Kidan, Y., and Sander, P. (2001) Structural basis for selectivity and toxicity of ribosomal antibiotics. EMBO Rep. 2, 318–323.

    Article  CAS  PubMed  Google Scholar 

  2. Ban, N., Nissen, P., Hansen, J., Moore, P. B., and Steitz ,T.A. (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289,905–920.

    Article  CAS  PubMed  Google Scholar 

  3. Harms, J., Schluenzen, F., Zarivach, R., Bashan, A., Gat, S., Agmon, I., Bartels, H., Franceschi, F., and Yonath, A. (2001) High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107, 679–688.

    Article  CAS  PubMed  Google Scholar 

  4. Nissen, P., Hansen, J., Ban, N., Moore, P. B., and Steitz, T.A. (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930.

    Article  CAS  PubMed  Google Scholar 

  5. Schluenzen, F., Tocilj, A., Zarivach, R., Harms, J., Gluehmann, M., Janell, D., Bashan, A., Bartels, H., Agmon, I., Franceschi, F., and Yonath, A. (2000) Structure of functionally activated small ribosomal subunit at 3.3 Angstroms resolution. Cell 102, 615–623.

    Article  CAS  PubMed  Google Scholar 

  6. Schuwirth, B. S., Borovinskaya, M. A., Hau, C. W., Zhang, W., Vila-Sanjurjo, A., Holton, J. M., and Cate, J. H. (2005) Structures of the bacterial ribosome at 3.5 A resolution. Science 310, 827–834.

    Article  CAS  PubMed  Google Scholar 

  7. Wimberly, B. T., Brodersen, D. E., Clemons, W. M. Jr., Morgan-Warren, R. J., Carter, A. P., Vonrhein, C., Hartsch, T., and Ramakrishnan, V. (2000) Structure of the 30S ribosomal subunit. Nature 407, 327–339.

    Article  CAS  PubMed  Google Scholar 

  8. Yusupov, M. M., Yusupova, G. Z., Baucom, A., Lieberman, K., Earnest,T. N., Cate, J H, and Noller,H F. (2001) Crystal structure of the ribosome at 5.5 Aresolution. Science 292, 883–896.

    Article  CAS  PubMed  Google Scholar 

  9. Poehlsgaard, J., and Douthwaite, S. (2005) The bacterial ribosome as a target for antibiotics. Nat. Rev. Microbiol. 3, 870–881.

    Article  CAS  PubMed  Google Scholar 

  10. Bottger, E. C. (2006) The ribosome as a drug target. Trends Biotechnol. 24, 145–147.

    Article  PubMed  Google Scholar 

  11. Harms, J. M., Bartels, H., Schlunzen, F., and Yonath, A. (2003) Antibiotics acting on the translational machinery. J. CellSci. 116, 1391–1393.

    CAS  Google Scholar 

  12. Tenson, T., and Mankin, A. (2006) Antibiotics and the ribosome. Mol. Microbiol. 59, 1664–1677.

    Article  CAS  PubMed  Google Scholar 

  13. Brandi, L., Lazzarini, A., Cavaletti, L., Abbondi, M., Corti, E.,Ciciliato, I., Gastaldo, L., Marazzi, A., Feroggio, M., Fabbretti,A., Maio, A., Colombo, L., Donadio, S., Marinelli, F., Losi, F., Gualerzi, C. O., and Selva, E. (2006) Novel tetrapeptide inhibitors of bacterial protein synthesis produced by a Streptomyces sp. Biochemistry 45, 3692–3702.

    Article  CAS  PubMed  Google Scholar 

  14. Brandi, L., Fabbretti, A., La Teana, A., Abbondi, M., Losi, D., Donadio, S., etal. (2006) Specific, efficient, and selective inhibition of prokaryotic translation initiation by a novel peptide antibiatic. Proc Natl Acad Sci USA 103, 39–44.

    Article  CAS  PubMed  Google Scholar 

  15. Brandi, L., Fabbretti, A., Di Stefano, M., Lazzarini, A., Abbondi,M., and Gualerzi, C. O. (2006) Characterization of GE82832, a peptide inhibitor of translocation interacting with bacterial 30S ribosomal subunits. RNA 12, 1262–1270

    Article  CAS  PubMed  Google Scholar 

  16. McCarthy, J. E., and Gualerzi, C. (1990) Translational control of prokaryotic gene expression. Trends Genet. 6, 78–85.

    Article  CAS  PubMed  Google Scholar 

  17. Cigan, A. M., and Donahue, T. F. (1987) Sequence and structural features associated with translational initiator regions in yeast–A review. Gene 59, 1–18.

    Article  CAS  PubMed  Google Scholar 

  18. Iizuka, N., Najita, L., Franzusoff, A., and Sarnow, P. (1994) Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae. Mol. Cell Biol. 14, 7322–7330.

    CAS  PubMed  Google Scholar 

  19. Calogero, R. A., Pon, C. L., Canonaco, M. A., and Gualerzi, C. O. (1988) Selection of the mRNA translation initiation region by Escherichia coli ribosomes. Proc. Natl. Acad. Sci. USA 85, 6427–6431.

    Article  CAS  PubMed  Google Scholar 

  20. Carroll, R., and Lucas-Lenard, J. (1993) Preparation of a cell-free translation system with minimal loss of initiation factor eIF-2/eIF-2B activity. Anal. Biochem. 212, 17–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Fabrizio Loreni forthe kind gift of theHeLa S3 cell line.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc.

About this protocol

Cite this protocol

Brandi, L., Dresios, J., Gualerzi, C.O. (2008). Assays for the Identification of Inhibitors Targeting Specific Translational Steps. In: Champney, W.S. (eds) New Antibiotic Targets. Methods In Molecular Medicine™, vol 142. Humana Press. https://doi.org/10.1007/978-1-59745-246-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-246-5_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-915-4

  • Online ISBN: 978-1-59745-246-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics