Skip to main content

Inhibition ofChaperone-Dependent Bacterial Ribosome Biogenesis

  • Protocol
New Antibiotic Targets

Part of the book series: Methods In Molecular Medicine™ ((MIMM,volume 142))

Summary

In Escherichia coli, the molecular chaperone HSP70 (DnaK) is necessary for 30S and 50S ribosomal subunit assembly at temperatures above 37°C. Inhibitors of DnaK should therefore hinder ribosome biogenesis, in addition to all of the other DnaK-dependent cellular functions. An easily testable phenotype of DnaK is described here based on α-complementation of β-galactosidase. This protein fragment complementation requires a functional DnaK in vivo, offering a suitable method for screening for DnaK inhibitors. Subsequently, it will be of great importance to check whether inhibitors of bacterial DnaK selected in this way have an effect (inhibitory or stimulatory) on the activities of eukaryotic HSP70 and HSC70 chaperones, because of the universal conservation in all biota of these chaperones in both their structural and functional properties. This question is important due to their implication in many pathways in immunology, cancer biology, and neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alix, J. H (1993) Extrinsic factors in ribosome assembly. In The Translational Apparatus: Structure, Function, Regulation, Evolution (K. H. Nierhaus etal., eds.), Plenum, New York, pp.173–184.

    Google Scholar 

  2. Culver, G. M. (2003) Assembly of the 30S ribosomal subunit. Biopolymers 68, 234–249.

    Article  CAS  PubMed  Google Scholar 

  3. Alix, J. H., and Gurin, M. F. (1993) Mutant DnaK chaperones cause ribosome assembly defects in E. coli. Proc. Natl. Acad. Sci. USA 90, 9725–9729.

    Article  CAS  PubMed  Google Scholar 

  4. Sbai M., and Alix, J. H. (1998) DnaK-dependent ribosome biogenesis in E. coli: Competition for dominance between the alleles dnaK756 and dnaK +. Mol. Gen. Genet .260, 199–206.

    Article  CAS  PubMed  Google Scholar 

  5. El Hage, A., Sbai, M., and Alix, J. H. (2001) The chaperonin GroEL and other heat-shock proteins, besides DnaK, participate in ribosome biogenesis in E. coli. Mol. Gen. Genet. 264, 796–808.

    Article  Google Scholar 

  6. El Hage, A., and Alix, J. H. (2004) Authentic precursors to ribosomal subunits accumulate in E. coli in the absence of functional DnaK chaperone. Mol. Microbiol. 51, 189–201.

    Article  CAS  PubMed  Google Scholar 

  7. Alix, J. H. (2004) The work of chaperones. In Protein Synthesis and Ribosome Structure (K. H. Nierhaus.and D. N. Wilson, eds.), Wiley-VCH Verlag, New York, pp.529–562.

    Google Scholar 

  8. 8. Lopes Ferreira, N., and Alix, J. H. (2002) The DnaK chaperone is necessary for α-complementation of β-galactosidase in E. coli. J. Bacteriol . 184 7047–7054.

    Article  PubMed  Google Scholar 

  9. Bukau, B., and Walker, G. C. (1990) Mutations altering heat shock specific subunit of RNA polymerase suppress major cellular defects of E. coli mutants lacking the DnaK chaperone. EMBO J. 9, 4027–4036.

    CAS  PubMed  Google Scholar 

  10. Miller, J. H. (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  11. Neidhardt, F. C., Bloch, P. L., and Smith, D. F. (1974) Culture medium for enterobacteria. J. Bacteriol. 119, 736–747.

    CAS  PubMed  Google Scholar 

  12. Yanisch-Perron, C., Vieira, J., and Messing, J. (1985) Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119.

    Article  CAS  PubMed  Google Scholar 

  13. Wang, R. F., and Kushner, S. R. (1991) Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in E. coli. Gene 100, 195–199.

    Article  CAS  PubMed  Google Scholar 

  14. Rida, S., Caillet, J., and Alix, J. H. (1996) Amplification of a novel gene, sanA, abolishes avancomycin-sensitive defect in E. coli. J. Bacteriol. 178, 94–102.

    CAS  PubMed  Google Scholar 

  15. Shapiro, S., and Baneyx, F. (2002) Stress-based identification and classification of antibacterial agents: Second-generation E. coli reporter strains and optimization of detection. Antimicrob. Agents Chemother. 46, 2490–2497.

    Article  CAS  PubMed  Google Scholar 

  16. Abbas-Terki, T. and Picard, D. (1999) α-Complementation of β-galactosidase: An in vivo model substrate for the molecular chaperone heat-shock protein 90 in yeast. Eur. J.Biochem. 266, 517–523.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc.

About this protocol

Cite this protocol

Refaii, A.A., Jean-Hervé, A. (2008). Inhibition ofChaperone-Dependent Bacterial Ribosome Biogenesis. In: Champney, W.S. (eds) New Antibiotic Targets. Methods In Molecular Medicine™, vol 142. Humana Press. https://doi.org/10.1007/978-1-59745-246-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-246-5_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-915-4

  • Online ISBN: 978-1-59745-246-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics