Skip to main content

Methods to Assay Inhibitors of DNA Gyrase and Topoisomerase IV Activities

  • Protocol
New Antibiotic Targets

Part of the book series: Methods In Molecular Medicine™ ((MIMM,volume 142))

Summary

DNA gyrase and DNA topoisomerase (topo) IV are the bacterial targets of coumarin and quinolone antimicrobial agents. Widespread resistance to clinically important antibiotics such as beta-lactams and macrolides has stimulated the development of novel gyrase and topo IV inhibitors especially against Streptococcus pneumoniae and other Gram-positive pathogens. Here, we describe how gyrase and topo IV activities are measured and how inhibitors of these enzymes may be assayed, focusing as a paradigm on DNA supercoiling by S. pneumoniae gyrase, DNA decatenation by S. pneumoniae topo IV, and DNA cleavage by both enzymes. These approaches provide mechanistic insight on inhibitor action and allow identification of dual gyrase/topo IV targeting agents that can minimize the emergence of bacterial resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drlica, K., and Zhao, X. (1997) DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol. Mol. Biol. Rev. 61,377–392.

    CAS  PubMed  Google Scholar 

  2. Gellert, M., Mizuuchi, K., O’Dea, M. H., and Nash, H. A. (1976) DNA gyrase:An enzyme that introduces superhelical turns into DNA. Proc. Natl. Acad. Sci.USA 73, 3872–3876.

    Article  CAS  PubMed  Google Scholar 

  3. Mizuuchi, K., Mizuuchi, M., O’Dea, M. H., and Gellert, M. (1984) Cloning and simplified purification of Escherichia coli DNA gyrase A and B proteins. J. Biol. Chem. 259, 9199–9201.

    CAS  PubMed  Google Scholar 

  4. Pan, X.-S., and Fisher, L. M. (1999) Streptococcus pneumoniae DNA gyrase and topoisomerase IV: Overexpression, purification, and differential inhibition by fluoroquinolones. Antimicrob. Agents Chemother. 43, 1129–1136.

    CAS  PubMed  Google Scholar 

  5. Aubry, A., Veziris, N., Cambau, E., Truffot-Pernot, C., Jarlier, V., and Fisher, L. M. (2006) Novel gyrase mutations in quinolone-resistant and -hypersusceptible clinical isolates of Mycobacterium tuberculosis: Functional analysis of mutant enzymes. Antimicrob. Agents Chemother. 50, 104–112.

    Article  CAS  PubMed  Google Scholar 

  6. Mizuuchi, M., Fisher, L. M., O’Dea, M. H., and Gellert, M. (1980) DNA gyrase action involves the introduction of transient double strand breaks into DNA. Proc. Natl. Acad. Sci. USA. 77, 1847–1851.

    Article  CAS  PubMed  Google Scholar 

  7. Corbett, K. D., and Berger, J. M. (2004) Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Ann. Rev. Biophys. Biomol. Struct. 33, 95–118.

    Article  CAS  Google Scholar 

  8. Corbett, K. D., Schoeffler A. J., Thomsen, N. D., and Berger, J. M. (2005) The structural basis for substrate specificity in DNA topoisomerase IV. J. Mol. Biol. 351, 545–561.

    Article  CAS  PubMed  Google Scholar 

  9. Kato, J., Nishimura, Y., Imamura, R., Niki, H., Higara, S., and Suzuki, S. (1990) New topoisomerase essential for chromosome segregation in E. coli. Cell 63, 393–404.

    Article  CAS  PubMed  Google Scholar 

  10. Maxwell, A., and Lawson, D. M. (2003) The ATP binding site of type II topoisomerases as a target of antibacterial drugs. Curr. Top. Med. Chem. 3, 283– 303.

    Article  CAS  PubMed  Google Scholar 

  11. Oram, M., Dosanjh, B., Gormley, N. A., Smith, C. V., Fisher, L. M., Maxwell, A., and Duncan, K. (1996) The mode of action of GR122222X, a novel inhibitor of DNA gyrase. Antimicrob. Agents Chemother. 40, 473–476.

    CAS  PubMed  Google Scholar 

  12. Drlica, K., and Malik, M. (2003) Fluoroquinolones: Action and resistance. Curr. Top. Med. Chem. 3, 249–282.

    Article  CAS  PubMed  Google Scholar 

  13. Grossman, T. H., Bartels, D. J., Mullin, S., Gross, C. H., Parsons, J. D., Liao, Y., Grillot, A.L., Stamos, D., Olson, E. R., Charifson, P. S., and Mani, N. (2007) Dual targeting of GyrB and ParE by a novel aminobenzimidazole class of antibacterial compounds. Antimicrob. Agents Chemother. 51, 657–666.

    Article  CAS  PubMed  Google Scholar 

  14. Pan, X.-S., and Fisher, L. M. (1997) Targeting of DNA gyrase in Streptococcus pneumoniae by sparfloxacin: Selective targeting of gyrase or topoisomerase IV by quinolones. Antimicrob. Agents Chemother. 41, 471–474.

    CAS  PubMed  Google Scholar 

  15. Pan, X.-S., and Fisher, L. M. (1998) DNA gyrase and topoisomerase IV are dual targets of clinafloxacin action in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 42, 2810–2816.

    CAS  PubMed  Google Scholar 

  16. Zhanel, G. G., Fontaine, S., Adam, H., Schurek, K., Mayer, M., Noreddin, A. M., Gin, A. S., Rubinstein, E., and Hoban, D. J. (2006) A review of new fluoroquinolones: Focus on their use in respiratory tract infections. Treatment Respir. Med. 5, 437–465.

    Article  CAS  Google Scholar 

  17. Staudenbauer, W. L., and Orr, E. (1982) DNA gyrase: Affinity chromatography on novobiocin-Sepharose and catalytic properties. Nucleic Acids Res. 9, 3589–3603.

    Article  Google Scholar 

  18. Pan, X.-S., Yague, G., and Fisher, L. M. (2001) Quinolone resistance mutations in Streptococcus pneumoniae GyrA and ParC proteins: Mechanistic insights into quinolone action from enzymatic analysis, intracellular levels, and phenotypes of wild-type and mutant proteins. Antimicrob. Agents Chemother. 45, 3140–3147.

    Article  CAS  PubMed  Google Scholar 

  19. Sayer, P. J., Goble, M. L., Oram, M., and Fisher, L. M. (2001) Plasmid supercoiling by DNA gyrase. In Methods in Molecular Biology, Vol. 95: DNA Topoisomerase Protocols, Part II: Enzymology and Drugs (N. Osheroff and M. A. Bjornsti, eds.), Humana Press Inc, Totowa, NJ, pp. 25–33.

    Google Scholar 

Download references

Acknowledgments

X.-S. Pan and this work were supported by Project Grant BBD01882X1 from the Biotechnology and Biological Sciences Council of the United Kingdom.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc.

About this protocol

Cite this protocol

Fisher, L.M., Pan, XS. (2008). Methods to Assay Inhibitors of DNA Gyrase and Topoisomerase IV Activities. In: Champney, W.S. (eds) New Antibiotic Targets. Methods In Molecular Medicine™, vol 142. Humana Press. https://doi.org/10.1007/978-1-59745-246-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-246-5_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-915-4

  • Online ISBN: 978-1-59745-246-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics