Skip to main content

Study of Adipose Tissue Gene Expression by In Situ Hybridization

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 456))

Summary

Adipose tissue synthesizes factors involved in the body's homeostasis. Thus, measurements of messenger ribonucleic acid (mRNA) concentrations are important to study the involvement of adipose tissue in various physiological and pathophysiological conditions, in particular in obesity. Because adipose tissue is highly heterogeneous, containing both a stromal and an adipocyte compartment, each one having different cellular composition and functional capacities, in situ hybridization is a powerful tool to analyze the discrete expression of the mRNAs coding for the various factors synthesized within this tissue. Presented here is a detailed protocol for in situ hybridization of mRNAs in adipose tissue using 35S-labeled single-stranded probes with sufficient details for the readers unfamiliar with histologic techniques. Included are details of tissue sectioning and preparation, probe synthesis, hybridization reaction, and macro- and microscopic signal detection.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548–2556

    Article  CAS  PubMed  Google Scholar 

  2. Hauner H (2005) Secretory factors from human adipose tissue and their functional role. Proc Nutr Soc 64:163–169

    Article  CAS  PubMed  Google Scholar 

  3. Park YW, Zhu S, Palaniappan L, Heshka S, Carnethon MR, Heymsfield SB (2003) The metabolic syndrome: prevalence and associated risk factors findings in the US population from the third National Health and Nutrition examination survey. Arch Intern Med 163:427–436

    Article  PubMed  Google Scholar 

  4. Matsuzawa Y (2006) The metabolic syndrome and adipocytokines. FEBS Lett 580:2917–2921

    Article  CAS  PubMed  Google Scholar 

  5. Walden PD, Ruan W, Feldman M, Kleinberg DL (1998) Evidence that the mammary fat pad mediates the action of growth hormone in mammary gland development. Endocrinology 139: 659–662

    Article  CAS  PubMed  Google Scholar 

  6. Wilson-Fritch L, Nicoloro S, Chouinard M, Lazar MA, Chui PC, Leszyk J, Straubhaar J, Czech MP, Corvera S (2004) Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J Clin Invest 114:1281–1289

    CAS  PubMed  Google Scholar 

  7. Desbriere R, Vuaroqueaux V, Achard V, Boullu-Ciocca S, Labuhn M, Dutour A, Grino M (2006) 11β-hydroxysteroid dehydrogenase type 1 mRNA is increased in both visceral and subcutaneous adipose tissue of obese patients. Obesity 14:794–798

    Article  CAS  PubMed  Google Scholar 

  8. Young WS (1992) Regulation of gene expression in the hypothalamus: hybridization histochemical studies. Ciba Found Symp 168:127–138

    CAS  PubMed  Google Scholar 

  9. Schenborn ET, Mierendorf RC (1985) A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucl Acids Res 13:6223–6236

    Article  CAS  PubMed  Google Scholar 

  10. Cox, K.H., DeLeon DV, Angerer LM, Angerer RC (1984) Detection of mRNAs in sea urchin embryos by in situ hybridization using asymetric RNA probes. Dev Biol 101:485–502

    Article  CAS  PubMed  Google Scholar 

  11. Simmons DM, Arriza JL, Swanson SW (1989) A complete protocol for in situ hybridization of messenger RNAs in brain and other tissues with radiolabeled single-stranded RNA probes. J Histotechnol 12:169–181

    CAS  Google Scholar 

  12. Paulmyer-Lacroix O, Boullu S, Oliver C, Alessi M-C, Grino M (2002) Expression of the mRNA coding for 11β-hydroxysteroid dehydrogenase type 1 in adipose tissue from obese patients: an in situ hybridization study. J Clin Endocrinol Metab 87:2701–2705

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Dr A Silaghi for her skillful help in photographic art.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Grino, M. (2008). Study of Adipose Tissue Gene Expression by In Situ Hybridization. In: Yang, K. (eds) Adipose Tissue Protocols. Methods in Molecular Biology™, vol 456. Humana Press. https://doi.org/10.1007/978-1-59745-245-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-245-8_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-916-1

  • Online ISBN: 978-1-59745-245-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics