Skip to main content

Methods That Resolve Different Contributions of Clonal Expansion to Adipogenesis in 3T3-L1 and C3H10T1/2 Cells

  • Protocol
Book cover Adipose Tissue Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 456))

Summary

The mouse embryo fibroblast cell lines 3T3-L1 and C3H10T1/2 differentiate to adipocytes that exhibit similar insulin regulation of lipogenesis. These cell lines, however, differ appreciably in the processes that produce the major regulator PPARγ. Each line is stimulated by a mixture of insulin, dexamethasone, and methylisobutylxanthine (IDM). In the first 24 h, IDM activates each cell type to produce similar regulatory changes and cell contraction. However, the increase in PPARγ is delayed by 24 h in typical 3T3-L1 cells compared with C3H10T1/2 cells. This delay is caused by the need for one or two rounds of cell division (clonal expansion) for PPARγ synthesis in 3T3-L1 cells. This expansion also occurs in C3H10T1/2 cells, but is not needed for PPARγ synthesis and differentiation. Other 3T3-L1 sublines have been described that follow the C3H10T1/2 pattern of differentiation. Culture conditions and inhibitors are described here that remove clonal expansion in C3H10T1/2 cells. With these constraints the cells retain full commitment to differentiation. This distinction is significant because many agents suppress differentiation in 3T3-L1 cells through inhibition of clonal expansion. Other effects on differentiation may be seen in C3H10T1/2 cells that are obscured in 3T3-L1 cells due to this inhibition of proliferation. Human preadipocytes do not need clonal expansion for adipogenesis, thus paralleling C3H10T1/2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanlon PR, Cimafranca MA, Liu X, Cho YC, Jefcoate CR (2005) Microarray analysis of early adipogenesis in C3H10T1/2 cells: cooperative inhibitory effects of growth factors and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol 207:39–58

    Article  CAS  PubMed  Google Scholar 

  2. Tang QQ, Otto TC, Lane MD (2003) Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc Natl Acad Sci USA 100:44–49

    Article  CAS  PubMed  Google Scholar 

  3. Tchtonia T, Giorgadze N, Kirkland JL (2006) Fat depot-specific characteristics are retained in strains derived from single human pre-adipocytes. Diabetes 65:2571–2578

    Article  Google Scholar 

  4. Voros G, Maquoi E, Demeulemeester D, Clerx N, Collen D, Lijnen RH (2005) Modulation of Angiogenesis during Adipose Tissue Development in Murine Models of Obesity. Endocrinology 146:4545–4554

    Article  CAS  PubMed  Google Scholar 

  5. Nakajima I, Yamaguchi T, Ozutsumi K, Aso H (1998) Adipose tissue extracellular matrix: newly organized by adipocytes during differentiation. Differentiation 63: 193–200

    Article  CAS  PubMed  Google Scholar 

  6. Liu J, DeYoung SM, Zhang M, Cheng A, Saltiel AR (2005) Changes in integrin expression during adipocyte differentiation. Cell Metab 2:165–177

    Article  PubMed  Google Scholar 

  7. Mueller E, Drori S, Aiyer A, Yie J, Sarraf P, Chen H, Hauser S, Rosen ED, Ge K, Roeder RG, Spiegelman BM (2002) Genetic analysis of adipogenesis through PPARγ isoforms. J Biol Chem 277:41925–41930

    Article  CAS  PubMed  Google Scholar 

  8. Zhu Y, Qi C, Korenberg JR, et al. (1995) Structural organization of mouse PPAR gene: alternative promoter use and different splicing yield two mPPAR;γ isoforms. Proc Natl Acad Sci USA 92:7921–7925

    Article  CAS  PubMed  Google Scholar 

  9. Taylor SM, Jones PA (1979) Multiple new phonotypes induced in 10T1/2 and 3T3 Cells Treated with Azacytidine. Cell 17:771–779

    Article  CAS  PubMed  Google Scholar 

  10. Sordella R, Jiang W, Chen GC, Curto M, Settleman J (2003) Modulation of Rho GTPase signaling regulates a switch between adipogenesis and myogenesis. Cell 113:147–158

    Article  CAS  PubMed  Google Scholar 

  11. Rosen ED Spiegelman BM (2000) Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol 16:145–171

    Article  CAS  PubMed  Google Scholar 

  12. Cho YC, Zheng WC, Yamamoto M, Jefcoate CR (2005) Differentiation of pluripotent C3H10T1/2 cells rapidly elevates CYP1B1 through a novel process that overcomes a loss of Ah Receptor. Arch Biochem Biophys 439:139–153

    Article  CAS  PubMed  Google Scholar 

  13. Wang C, Pattabirraman N, Pestell RG (2003) Cuclin Dl Repression of PPARγ expression and Transacivation. Mol Cell Biol 23:6159–6173

    Article  CAS  PubMed  Google Scholar 

  14. Liu J, Farmer SR (2004) Regulating the balance between peroxisome proliferator-activated receptor gamma and beta-catenin signaling during adipogenesis. A glycogen synthase kinase 3beta phosphorylation-defective mutant of beta-catenin inhibits expression of a subset of adipogenic genes. J Biol Chem 279:45020–45027

    Article  CAS  PubMed  Google Scholar 

  15. Longo K A., Wright WS, Kang S, Gerin I, Chiang SH, Lucas PC, Opp MR, MacDougald OA, (2004) WntlOb inhibits development of white and brown adipose tissues. J Biol Chem 279:35503–35509

    Article  CAS  PubMed  Google Scholar 

  16. Liu FQ, Singh AM, Mofunanya A, Love D, Terada N, Moon RT (2007) Takemaru KI. Chibby promotes adipocyte differentiation through inhibition of {beta}-catenin signaling. Mol Cell Biol 27:4347–4354

    Article  Google Scholar 

  17. Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Physiol Rev 78:783–809

    CAS  PubMed  Google Scholar 

  18. Hamm JK, Park BH, Farmer SR (2001) A role for C/EBPβ in regulating PPARγ activity during adipogenesis in 3T3L1 cells. J Biol Chem 276:18464–18471

    Article  CAS  PubMed  Google Scholar 

  19. Tomlinson JJ, Boureau A, Wu D, Atlas E, Hache RJG (2006) Modulation of early human pre-adipocyte differentiation by glucocorticoids. Endocrinology 147:5284–5293

    Article  CAS  PubMed  Google Scholar 

  20. Chung KJ, Tzameli I, Pissios P, Rovira I, Gavrilova IO, Ohtsubo T, Chen Z, Finkel T, Flier JS, and Firedman JM (2007) Xanthine oxidase is a regulator of adipogenesis and PPARγ activity. Cell Metab 5:115–128

    Article  Google Scholar 

  21. Reichert M, Eick D (1999) Analysis of cell cycle arrest in adipocyte differentiation. Oncogene. 18:459–456

    Article  CAS  PubMed  Google Scholar 

  22. Cho YC, Jefcoate CR (2004) PPARgammal synthesis and adipogenesis in C3H10T1/2 cells depends on S-phase progression, but does not require mitotic clonal expansion. J Cell Biochem 91:336–353

    Article  CAS  PubMed  Google Scholar 

  23. Qui Z, Wei Y, Chen N, Jiang M, Wu J, Liao K (2001) DNA synthesis and mitotic clonal expansion is not a required step for 3t3-ll pre-adipocyte differentiation into adipocytes. J Biol Chem 276:11988–11995

    Article  Google Scholar 

  24. Prusty D, Park BH, Davis KE, Farmer SR (2002) Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor gamma (PPARgamma) and C/EBPαlpha gene expression during the differentiation of 3T3-L1 preadi-pocytes. J Biol Chem 277:46226–46232

    Article  CAS  PubMed  Google Scholar 

  25. Soukas A, Socci ND, Saatkamp BD, Novelli S, Friedman JM (2001) Distinct transcriptional profiles of adipogenesis in vivo and in vitro. J Biol Chem 276:34167–34174

    Article  CAS  PubMed  Google Scholar 

  26. Ross SE, Erickson RL, Gerin I, et al (2002) Microarray analyses during adipogenesis: understanding the effects of Wnt signaling on adipogenesis and the roles of liver X receptor alpha in adipocyte metabolism. Mol Cell Biol 22:5989–5999

    Article  CAS  PubMed  Google Scholar 

  27. Spiegelman BM, Farmer SR (1982) Decreases in tubulin and actin gene expression prior to morphological differentiation of 3T3 adipocytes. Cell 29:53–60

    Article  CAS  PubMed  Google Scholar 

  28. Zhao L, Gregoire F, Sul HS (2000) Transient induction of ENC-1, a Kelch-related actin-binding protein, is required for adipocyte differentiation. J Biol Chem 275: 16845–16850

    Article  CAS  PubMed  Google Scholar 

  29. Lilla J, Stickens D, Werb Z (2002) Metalloproteases and adipogenesis, a weighty subject. Am JPathol 100:1551–1554

    Google Scholar 

  30. Turner CE (2000) Paxillin and focal adhesion signaling. Nat Cell Biol 2:E231–E236

    Article  CAS  PubMed  Google Scholar 

  31. Hanlon PR, Ganem LG., Cho YC, Yamamoto M, Jefcoate CR (2003) AhR- and ERK-dependent pathways function synergistically to mediate 2,3,7,8-tetrachlorodibenzo-p-dioxin suppression of peroxisome proliferator-activated receptor-gammal expression and subsequent adipocyte differentiation. Toxicol Appl Pharmacol 189:11–27

    Article  CAS  PubMed  Google Scholar 

  32. Greenspan P, Mayer EP, Fowler SD (1985) Nile Red: a selective fluorescent stain for intrac-ellular lipid droplets. J Cell Biol 100:965–973

    Article  CAS  PubMed  Google Scholar 

  33. Sottile V, Seuwen K (2000) Bone morphogenic Protein-2 stimulates adipogenic differentiation of mesenchymal precursor cells in synergy with BRL-49563 (rosiglitazone) FEBS Lett 475:201–204

    Article  CAS  PubMed  Google Scholar 

  34. Cimafranca MA, Hanlon PR, and Jefcoate CR (2004) TCDD administration after the pro-adipogenic differentiation stimulus inhibits PPARγ through a MEK-dependent process but less effectively suppresses adipogenesis. Toxicol Appl Pharmacol 196:156–168

    Article  CAS  PubMed  Google Scholar 

  35. Liu X, Jefcoate CR (2006) 2,3,7,8 tetrachlorodibenzo-p-dioxin and epidermal growth factor cooperatively suppress PPARγl stimulation and restore focal adhesion complexes during adipogenesis: selective contributions of Src, Rho and Erk distinguish these overlapping processes in C3H10T1/2 cells. Mol Pharmacol 70:1902–1915

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jefcoate, C.R., Wang, S., Liu, X. (2008). Methods That Resolve Different Contributions of Clonal Expansion to Adipogenesis in 3T3-L1 and C3H10T1/2 Cells. In: Yang, K. (eds) Adipose Tissue Protocols. Methods in Molecular Biology™, vol 456. Humana Press. https://doi.org/10.1007/978-1-59745-245-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-245-8_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-916-1

  • Online ISBN: 978-1-59745-245-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics