Skip to main content

Visualization and Analysis of Molecular Data

  • Protocol
Metabolomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 358))

Abstract

This chapter provides an overview of visualization and analysis techniques applied to large-scale datasets from genomics, metabolomics, and proteomics. The aim is to reduce the number of variables (genes, metabolites, or proteins) by extracting a small set of new relevant variables, usually termed components. The advantages and disadvantages of the classical principal component analysis (PCA) are discussed and a link is given to the closely related singular value decomposition and multidimensional scaling. Special emphasis is given to the recent trend toward the use of independent component analysis, which aims to extract statistically independent components and, therefore, provides usually more meaningful components than PCA. We also discuss normalization techniques and their influence on the result of different analytical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scholz, M., Gatzek, S., Sterling, A., Fiehn, O., and Selbig, J. (2004) Metabolite fingerprinting: detecting biological features by independent component analysis. Bioinformatics 20, 2447–2454.

    Article  PubMed  CAS  Google Scholar 

  2. Quackenbush, J. (2002) Microarray data normalization and transformation. Nat. Genet. 32, 496–501.

    Article  PubMed  CAS  Google Scholar 

  3. Jolliffe, I. T. (1986) Principal Component Analysis. Springer-Verlag, New York, NY.

    Google Scholar 

  4. Diamantaras K. I., and Kung, S. Y. (1996) Principal Component Neural Networks. Wiley, New York, NY.

    Google Scholar 

  5. Golub, G. and van Loan, C. (1996) Matrix Computations, 3rd Ed. The Johns Hopkins University Press, Baltimore, MD.

    Google Scholar 

  6. Wall, M. E., Rechtsteiner, A., and Rocha, L. M. (2003) Singular value decomposition and principal component analysis. In: A Practical Approach to Microarray Data Analysis, (Berrar, D. P., Dubitzky, W., and Granzow, M., eds.), Kluwer, Norwell, MA, pp. 91–109.

    Chapter  Google Scholar 

  7. Alter, O., Brown, P. O., and Botstein, D. (2000) Singular value decomposition for genome-wide expression data processing and modeling. PNAS 97, 10,101–10,106.

    Article  PubMed  CAS  Google Scholar 

  8. Holter, N. S., Mitra, M., Maritan, A., Cieplak, M., Banavar, J. R., and Fedoroff, N. V. (2000) Fundamental patterns underlying gene expression profiles: simplicity from complexity. PNAS 97, 8409–8414.

    Article  PubMed  CAS  Google Scholar 

  9. Liu, L., Hawkins, D. M., Ghosh, S., and Young, S. S. (2003) Robust singular value decomposition analysis of microarray data. PNAS 100, 13,167–13,172.

    Article  PubMed  CAS  Google Scholar 

  10. Cox, T. F. and Cox, M. A. A. (2001) Multidimensional Scaling. Chapman and Hall, London, England.

    Google Scholar 

  11. Burges, C. J. C. (2004) Geometric methods for feature extraction and dimensional reduction-a guided tour. In: Data Mining and Knowledge Discovery Handbook (Rokach, L. and Maimon, O., eds.), Springer Verlag, New York, pp. 59–92.

    Google Scholar 

  12. Sanger, T. D. (1989) Optimal unsupervised learning in a single layer linear feedforward network. Neural Networks 2, 459–473.

    Article  Google Scholar 

  13. Baldi, P. F. and Homik, K. (1995) Learning in linear neural networks: a survey. IEEE Trans. on Neural Networks 6, 837–858.

    Article  CAS  Google Scholar 

  14. Comon P. (1994) Independent component analysis, a new concept? Signal Processing 36, 287–314.

    Article  Google Scholar 

  15. Bell, A. J. and Sejnowski, T. J. (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7, 1129–1159.

    Article  PubMed  CAS  Google Scholar 

  16. Hyvärinen, A. and Oja, E. (2000) Independent component analysis: algorithms and applications. Neural Networks 4-5, 411–430.

    Article  Google Scholar 

  17. Stone, J. V. (2002) Independent component analysis: an introduction. Trends Cogn. Sci. 6, 59–64.

    Article  PubMed  Google Scholar 

  18. Haykin, S. (2000) Unsupervised Adaptive Filtering, vol. 1: Blind Source Separation. Wiley, New York, NY.

    Google Scholar 

  19. Haykin, S. (2000) Unsupervised Adaptive Filtering, vol. 2: Blind Deconvolution. Wiley, New York, NY.

    Google Scholar 

  20. Hyvärinen, A., Karhunen, J., and Oja, E. (2001) Independent Component Analysis. Wiley, New York, NY.

    Book  Google Scholar 

  21. Cichocki, A. and Amari, S. (2003) Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. Wiley, New York, NY.

    Google Scholar 

  22. Stone, J. V. (2004) Independent Component Analysis: A Tutorial Introduction. MIT Press, Cambridge, MA.

    Google Scholar 

  23. Vigário, R., Särelä, J., Jousmäki, V., Hämäläinen, M., and Oja, E. (2000) Independent component approach to the analysis of EEG and MEG recordings. IEEE Trans. Biomed. Eng. 47, 589–593.

    Article  PubMed  Google Scholar 

  24. Tang, A. C., Pearlmutter, B. A., Malaszenko, N. A., Phung, D. B., and Reeb, B. C. (2002) Independent components of magnetoencephalography: Localization. Neural Comput. 14, 1827–1858.

    Article  PubMed  Google Scholar 

  25. Jung, T.-P., Makeig, S., Lee, T.-W., et al. (2000) Independent component analysis of biomedical signals. In: Proc. Int. Workshop on Independent Component Analysis and Blind Signal Separation (ICA2000), (Pajunen, P. and Karhunen, J., eds.), IEEE Signal Processing Society, Helsinki, Finland, pp. 633–644.

    Google Scholar 

  26. Makeig, S., Westerfield, M., Jung, T.-P., et al. (2002) Dynamic brain sources of visual evoked responses. Science 295, 690–694.

    Article  PubMed  CAS  Google Scholar 

  27. Liebermeister, W. (2002) Linear modes of gene expression determined by independent component analysis. Bioinformatics 18, 51–60.

    Article  PubMed  CAS  Google Scholar 

  28. Martoglio, A.-M., Miskin, J. W., Smith, S. K., and MacKay, D. J. C. (2002) A decomposition model to track gene expression signatures: preview on observer-independent classification of ovarian cancer. Bioinformatics 18, 1617–1624.

    Article  PubMed  CAS  Google Scholar 

  29. Lee, S.-I. and Batzoglou, S. (2003) Application of independent component analysis to microarrays. Genome Biol. 4, R76.

    Article  PubMed  Google Scholar 

  30. Saidi, S. A., Holland, C. M., Kreil, D. P., et al. (2004) Independent component analysis of microarray data in the study of endometrial cancer. Oncogene 23, 6677–6683.

    Article  PubMed  CAS  Google Scholar 

  31. Scholz, M., Gibon, Y., Stitt, M., and Selbig, J. (2004) Independent component analysis of starch deficient pgm mutants. In: Proceedings of the German Conference on Bioinformatics, (Giegerich, R. and Stoye, J., eds.), GI, Bielefeld, Germany, pp. 95–104.

    Google Scholar 

  32. Cardoso, J.-F. and Souloumiac, A. (1993) Blind beamforming for non Gaussian signals. IEE Proceedings-F 6, 362–370.

    Google Scholar 

  33. Ziehe, A. and Müller, K.-R. (1998) TDSEP: an efficient algorithm for blind separation using time structure. In: Proc. ICANN’98, Int. Conf. on Artificial Neural Networks, (Niklasson, L., Boden, M., and Ziemke, T., eds.), Springer Verlag, London, UK, pp, 675–680.

    Google Scholar 

  34. Blaschke, T. and Wiskott, L. (2004) CuBICA: independent component analysis by simultaneous third-and fourth-order cumulant diagonalization. IEEE Trans. Image Process 52, 1250–1256.

    Google Scholar 

  35. Bach, F. R. and Jordan, M. I. (2002) Kernel independent component analysis. J. Mach. Learn. Res. 3, 1–48.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Scholz, M., Selbig, J. (2007). Visualization and Analysis of Molecular Data. In: Weckwerth, W. (eds) Metabolomics. Methods in Molecular Biology™, vol 358. Humana Press. https://doi.org/10.1007/978-1-59745-244-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-244-1_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-561-3

  • Online ISBN: 978-1-59745-244-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics