Skip to main content

Understanding the Roadmap of Metabolism by Pathway Analysis

  • Protocol
Metabolomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 358))

Abstract

The theoretical investigation of the structure of metabolic systems has recently attracted increasing interest. In this chapter, the basic concepts of metabolic pathway analysis are described and various applications are outlined. In particular, the concepts of nullspace and elementary flux modes are explained. The presentation is illustrated by a simple example from tyrosine metabolism and a system describing lysine production in Corynebacterium glutamicum. The latter system gives rise to 37 elementary modes, 36 of which produce lysine with different molar yields. The examples illustrate that metabolic pathway analysis is a useful tool for better understanding the complex architecture of intracellular metabolism, for determining the pathways on which the molar conversion yield of a substrate-product pair under study is maximal, and for assigning functions to orphan genes (functional genomics). Moreover, problems emerging in the modeling of large networks are discussed. An outlook on current trends in the field concludes the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dandekar, T., Schuster, S., Snel, B., Huynen, M., and Bork, P. (1999) Pathway alignment: application to the comparative analysis of glycolytic enzymes. Biochem. J. 343, 115–124.

    Article  PubMed  CAS  Google Scholar 

  2. Schuster, S., Pfeiffer, T., Moldenhauer, F., Koch, I., and Dandekar, T. (2002) Exploring the pathway structure of metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae. Bioinformatics 18, 351–361.

    Article  PubMed  CAS  Google Scholar 

  3. Förster, J., Gombert, A. K., and Nielsen, J. (2002) A functional genomics approach using metabolomics and in silico pathway analysis. Biotechnol. Bioeng. 79, 703–712.

    Article  PubMed  Google Scholar 

  4. Van Dien, S. J. and Lidstrom, M. E. (2002) Stoichiometric model for evaluating the metabolic capabilities of the facultative methylotroph Methylobacterium extorquens AM1, with application to reconstruction of C3 and C4 metabolism. Biotechnol. Bioeng. 78, 296–312.

    Article  PubMed  Google Scholar 

  5. Romero, P., Wagg, J., Green, M. L., Kaiser, D., Krummenacker, M., and Karp, P. D. (2005) Computational prediction of human metabolic pathways from the complete human genome. Genome Biol. 6, R2.1–R2.17.

    Article  Google Scholar 

  6. Mavrovouniotis, M. L., Stephanopoulos, G., and Stephanopoulos, G. (1990) Computer-aided synthesis of biochemical pathways. Biotechnol. Bioeng. 36, 1119–1132.

    Article  PubMed  CAS  Google Scholar 

  7. Schuster, S. and Hilgetag, C. (1994) On elementary flux modes in biochemical reaction systems at steady state. J. Biol. Syst. 2, 165–182.

    Article  Google Scholar 

  8. Alberty, R. A. (1996) Calculation of biochemical net reactions and pathways by using matrix operations. Biophys. J. 71, 507–515.

    Article  PubMed  CAS  Google Scholar 

  9. Stephanopoulos, G. and Simpson, T. W. (1997) Flux amplification in complex metabolic networks. Chem. Eng. Sci. 52, 2607–2627.

    Article  CAS  Google Scholar 

  10. Seressiotis, A. and Bailey, J. E. (1988) MPS: an artificially intelligent software system for the analysis and synthesis of metabolic pathways. Biotechnol. Bioeng. 31, 587–602.

    Article  PubMed  CAS  Google Scholar 

  11. Schilling, C. H., Letscher, D., and Palsson, B. O. (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J. Theor. Biol. 203, 229–248.

    Article  PubMed  CAS  Google Scholar 

  12. Clarke, B. L. (1981) Complete set of steady states for the general stoichiometric dynamical system. J. Chem. Phys. 75, 4970–4979.

    Article  CAS  Google Scholar 

  13. Heinrich, R. and Schuster, S. (1996) The Regulation of Cellular Systems, Chapman and Hall, New York, NY.

    Google Scholar 

  14. Schuster, S., Dandekar, T., and Fell, D. A. (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol. 17, 53–60.

    Article  PubMed  CAS  Google Scholar 

  15. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., and Barabási, A. L. (2000) The large-scale organization of metabolic networks. Nature 407, 651–654.

    Article  PubMed  CAS  Google Scholar 

  16. Ma, H. and Zeng, A. P. (2003) Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics 19, 270–277.

    Article  PubMed  CAS  Google Scholar 

  17. Hofestädt, R. (1994) A petri net application to model metabolic processes. Syst. Anal. Mod. Simul. 16, 113–122.

    Google Scholar 

  18. Küffner, R., Zimmer, R., and Lengauer, T. (2000) Pathway analysis in metabolic databases via differential metabolic display (DMD). Bioinformatics 16, 825–836.

    Article  PubMed  Google Scholar 

  19. Zevedei-Oancea, I. and Schuster, S. (2003) Topological analysis of metabolic networks based on Petri net theory. In Silico Biol. 3, 323–345.

    PubMed  CAS  Google Scholar 

  20. Seo, H., Lee, D.-Y., Park, S., et al. (2001) Graph-theoretical identification of pathways for biochemical reactions. Biotechnol. Lett. 23, 1551–1557.

    Article  CAS  Google Scholar 

  21. Fell, D. A. (1992) Metabolic control analysis: a survey of its theoretical and experimental development. Biochem. J. 286, 313–330.

    PubMed  CAS  Google Scholar 

  22. Stephanopoulos, G. N., Aristidou, A. A., and Nielsen, J. (1998) Metabolic Engineering: Principles and Methodologies, Academic Press, San Diego, CA.

    Google Scholar 

  23. Wiechert, W. (2002) Modeling and simulation: tools for metabolic engineering. J. Biotechn. 94, 37–63.

    Article  CAS  Google Scholar 

  24. Palsson, B. O. (2004) In silico biotechnology. Era of reconstruction and interrogation. Curr. Opin. Biotechnol. 15, 50–51.

    Article  PubMed  CAS  Google Scholar 

  25. Carlson, R. and Srienc, F. (2004) Fundamental Escherichia coli biochemical pathways for biomass and energy production: identification of reactions. Biotechnol. Bioeng. 85, 1–19.

    Article  PubMed  CAS  Google Scholar 

  26. Carlson, R., Fell, D., and Srienc, F. (2002) Metabolic pathway analysis of a recombinant yeast for rational strain development. Biotechnol. Bioeng. 79, 121–134.

    Article  PubMed  CAS  Google Scholar 

  27. Cakir, T., Kirdar, B., and Ulgen, K. O. (2004) Metabolic pathway analysis of yeast strengthens the bridge between transcriptomics and metabolic networks. Biotechnol. Bioeng. 86, 251–260.

    Article  PubMed  CAS  Google Scholar 

  28. Poolman, M. G., Fell, D. A., and Raines, C. A. (2003) Elementary modes analysis of photosynthate metabolism in the chloroplast stroma. Eur. J. Biochem. 270, 430–439.

    Article  PubMed  CAS  Google Scholar 

  29. Cakir, T., Tacer, C. S., and Ulgen, K. O. (2004) Metabolic pathway analysis of enzyme-deficient human red blood cells. Biosystems 78, 49–67.

    Article  PubMed  CAS  Google Scholar 

  30. Liao, J. C., Hou, S. Y., and Chao, Y. P. (1996) Pathway analysis, engineering and physiological considerations for redirecting central metabolism. Biotechnol. Bioeng. 52, 129–140.

    Article  PubMed  CAS  Google Scholar 

  31. Schuster, S., Dandekar, T., Mauch, K., Reuss, M., and Fell, D. (2000) Recent developments in metabolic pathway analysis and their potential implications for biotechnology and medicine. In: Technological and Medical Implications of Metabolic Control Analysis, (Cornish-Bowden, A. and Cárdenas, M. L., eds.), Kluwer, Dordrecht, The Netherlands, pp. 57–66.

    Google Scholar 

  32. Rohwer, J. M. and Botha, F. C. (2001) Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data. Biochem. J. 358, 437–445.

    Article  PubMed  CAS  Google Scholar 

  33. Wilhelm, T., Behre, J., and Schuster, S. (2004) Analysis of structural robustness of metabolic networks. System Biology 1, 114–120.

    Article  CAS  Google Scholar 

  34. Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S., and Gilles, E. D. (2002) Metabolic network structure determines key aspects of functionality and regulation. Nature 420, 190–193.

    Article  PubMed  CAS  Google Scholar 

  35. Heinrich, R., Rapoport, S. M., and Rapoport, T. A. (1977) Metabolic regulation and mathematical models. Prog. Biophys. Mol. Biol. 32, 1–82.

    Article  PubMed  CAS  Google Scholar 

  36. Klamt, S., Schuster, S., and Gilles, E. D. (2002) Calculability analysis in underdetermined metabolic networks illustrated by a model of the central metabolism in purple nonsulfur bacteria. Biotechnol. Bioeng. 77, 734–751.

    Article  PubMed  CAS  Google Scholar 

  37. Fell, D. A. (1990) Substrate cycles: theoretical aspects of their role in metabolism. Comm. Theor. Biol. 6, 1–14.

    Google Scholar 

  38. Simpson, T. W., Follstad, B. D., and Stephanopoulos, G. (1999) Analysis of the pathway structure of metabolic networks. J. Biotechnol. 71, 207–223.

    Article  PubMed  CAS  Google Scholar 

  39. Lay, D. C. (2002) Linear Algebra and its Applications, Addison-Wesley, Boston, MA.

    Google Scholar 

  40. Pfeiffer, T., Sanchez-Valdenebro, I., Nuno, J. C., Montero, F., and Schuster, S. (1999) METATOOL: for studying metabolic networks. Bioinformatics 15, 251–257.

    Article  PubMed  CAS  Google Scholar 

  41. Schuster, S., Klamt, S., Weckwerth, W., Moldenhauer, F., and Pfeiffer, T. (2002) Use of network analysis of metabolic systems in bioengineering. Bioprocesses Biosyst. Eng. 24, 363–372.

    Article  CAS  Google Scholar 

  42. Anderson, B. L. and Winawer, J. (2005) Image segmentation and lightness perception. Nature 434, 79–83.

    Article  PubMed  CAS  Google Scholar 

  43. Holter, N. S., Mitra, M., Maritan, A., Cieplak, M., Banavar, J. R., and Fedoroff, N. V. (2000) Fundamental patterns underlying gene expression profiles: simplicity from complexity. Proc. Natl. Acad. Sci. USA 97, 8409–8414.

    Article  PubMed  CAS  Google Scholar 

  44. Liebermeister, W. (2002) Linear modes of gene expression determined by independent component analysis. Bioinformatics 18, 51–60.

    Article  PubMed  CAS  Google Scholar 

  45. Schuster, S., Fell, D. A., and Dandekar, T. (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 18, 326–332.

    Article  PubMed  CAS  Google Scholar 

  46. Schuster, S., Hilgetag, C., Woods, J. H., and Fell, D. A. (2002) Reaction routes in biochemical reaction systems: algebraic properties, validated calculation procedure and example from nucleotide metabolism. J. Math. Biol. 45, 153–181.

    Article  PubMed  CAS  Google Scholar 

  47. Nussey, S. and Whitehead, S. (2001) Endocrinology. An Integrated Approach, BIOS Scientific Publishers Ltd, Oxford, UK.

    Book  Google Scholar 

  48. Fischer, E. and Sauer, U. (2003) A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli. J. Biol. Chem. 278, 46,446–46,551.

    Article  PubMed  CAS  Google Scholar 

  49. Hers, H., G., and Hue, L. (1983) Gluconeogenesis and related aspects of glycolysis. Annu. Rev. Biochem. 52, 617–653.

    Article  PubMed  CAS  Google Scholar 

  50. Nozicka, F., Guddat, J., Hollatz, H., and Bank, B. (1974) Theorie der Linearen Parametrischen Optimierung, Akademie-Verlag, Berlin, Germany.

    Google Scholar 

  51. Mendes, P. (1997) Biochemistry by numbers: simulation of biochemical pathways with Gepasi 3. Trends Biochem. Sci. 22, 361–363.

    Article  PubMed  CAS  Google Scholar 

  52. Klamt, S., Stelling, J., Ginkel, M., and Gilles, E. D. (2003) FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps. Bioinformatics 19, 261–269.

    Article  PubMed  CAS  Google Scholar 

  53. Wagner, C. (2004) Nullspace approach to determine the elementary modes of chemical reaction systems. J. Phys. Chem. B 108, 2425–2431.

    Article  CAS  Google Scholar 

  54. Urbanczik, R. and Wagner, C. (2005) An improved algorithm for stoichiometric network analysis: theory and applications. Bioinformatics 21, 1203–1210.

    Article  PubMed  CAS  Google Scholar 

  55. Gagneur, J. and Klamt, S. (2004) Computation of elementary modes: a unifying framework and the new binary approach. BMC Bioinformatics 5, 175.

    Article  PubMed  Google Scholar 

  56. Fell, D. A. and Small, J. R. (1986) Fat synthesis in adipose tissue. An examination of stoichiometric constraints. Biochem. J. 238, 781–786.

    PubMed  CAS  Google Scholar 

  57. Watson, M. R. (1986) A discrete model of bacterial metabolism. Comput. Appl. Biosci. 2, 23–27.

    PubMed  CAS  Google Scholar 

  58. Varma, A. and Palsson, B. O. (1993) Metabolic capabilities of Escherichia coli. I. Synthesis of biosynthetic precursors and cofactors. J. Theor. Biol. 165, 477–502.

    Article  PubMed  CAS  Google Scholar 

  59. Edwards, J. S., Ibarra, R. U., and Palsson, B. O. (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol. 19, 125–130.

    Article  PubMed  CAS  Google Scholar 

  60. Mahadevan, R. and Schilling, C. H. (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng. 5, 264–276.

    Article  PubMed  CAS  Google Scholar 

  61. Klamt, S. and Stelling, J. (2003) Two approaches for metabolic pathway analysis? Trends Biotechnol. 21, 64–69.

    Article  PubMed  CAS  Google Scholar 

  62. de Graaf, A. A. (2000) Metabolic flux analysis of Corynebacterium glutamicum. In: Bioreaction Engineering, Modelling and Control, (Schügerl, K. B. and Bellgardt, K. H., eds.), Springer, New York, NY, pp. 506–555.

    Google Scholar 

  63. Hermann, T. (2003) Industrial production of amino acids by coryneform bacteria. J. Biotechnol. 104, 155–172.

    Article  PubMed  CAS  Google Scholar 

  64. Schuster, S. (2004) Metabolic pathway analysis in biotechnology. In: Metabolic Engineering in the Post Genomic Era, (Kholodenko, B. N. and Westerhoff, H. V., eds.), Horizon Bioscience, Wymondham, UK, pp. 181–208.

    Google Scholar 

  65. von Mering, C., Jensen, L. J., Snel, B., et al. (2005) STRING: known and predicted protein protein associations, integrated and transferred across organisms. Nucleic Acids Res. 33, D433–D437.

    Article  Google Scholar 

  66. Schilling, C. H. and Palsson, B. O. (2000) Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis. J. Theor. Biol. 203, 249–283.

    Article  PubMed  CAS  Google Scholar 

  67. Papin, J. A., Price, N. D., Edwards, J. S., and Palsson, B. O. (2002) The genome-scale metabolic extreme pathway structure in Haemophilus influenzae shows significant network redundancy. J. Theor. Biol. 215, 67–82.

    Article  PubMed  CAS  Google Scholar 

  68. Price, N. D., Papin, J. A., and Palsson, B. O. (2002) Determination of redundancy and systems properties of the metabolic network of Helicobacter pylori using genome-scale extreme pathway analysis. Genome Res. 12, 760–769.

    PubMed  CAS  Google Scholar 

  69. Vo, T. D., Greenberg, H. J., and Palsson, B. O. (2004) Reconstruction and functional characterization of the human mitochondrial metabolic network based on proteomic and biochemical data. J. Biol. Chem. 279, 39,532–39,540.

    Article  PubMed  CAS  Google Scholar 

  70. Pachkov, M., Dandekar, T., Korbel, J., Bork, P., and Schuster, S. (2005) Pathway analysis of Mycoplasma pneumoniae nucleotide metabolism. Gene, in press.

    Google Scholar 

  71. Huynen, M. A., Snel, B., von Mering, C., and Bork, P. (2003) Functional prediction and protein networks. Curr. Opin. Cell Biol. 15, 191–198.

    Article  PubMed  CAS  Google Scholar 

  72. Osterman, A. and Overbeek, R. (2003) Missing genes in metabolic pathways: a comparative genomics approach. Curr. Opin. Chem. Biol. 7, 238–251.

    Article  PubMed  CAS  Google Scholar 

  73. Dandekar, T., Moldenhauer, F., Bulik, S., Bertram, H., and Schuster, S. (2003) A method for classifying metabolites in topological pathway analyses based on minimization of pathway number. BioSystems 70, 255–270.

    Article  PubMed  CAS  Google Scholar 

  74. Klamt, S. and Gilles, E. D. (2004) Minimal cut sets in biochemical reaction networks. Bioinformatics 20, 226–234.

    Article  PubMed  CAS  Google Scholar 

  75. Fard, N. S. (1997) Determination of minimal cut sets of a complex fault tree. Comput. Ind. Eng. 33, 59–62.

    Article  Google Scholar 

  76. Covert, M. and Palsson, B. (2003) Constraints-based models: regulation of gene expression reduces the steady-state solution space. J. Theor. Biol. 221, 309–325.

    Article  PubMed  CAS  Google Scholar 

  77. Papin, J. A. and Palsson, B. O. (2004) Topological analysis of mass-balanced signaling networks: a framework to obtain network properties including crosstalk. J. Theor. Biol. 227, 283–297.

    Article  PubMed  Google Scholar 

  78. Campbell, K. S. (1999) Signal transduction from the B cell antigen-receptor. Curr. Opin. Immunol. 11, 256–264.

    Article  PubMed  CAS  Google Scholar 

  79. Papin, J. A. and Palsson, B. O. (2004) The JAK-STAT signaling network in the human B-cell: an extreme signaling pathway analysis. Biophys. J. 87, 37–46.

    Article  PubMed  CAS  Google Scholar 

  80. Berg, J., Tymoczko, J., and Stryer, L. (2002) Biochemistry, Freeman, New York, NY.

    Google Scholar 

  81. Schuster, S., Kholodenko, B. N., and Westerhoff, H. V. (2000) Cellular information transfer regarded from stoichiometry and control analysis perspective. Biosystems 55, 73–81.

    Article  PubMed  CAS  Google Scholar 

  82. Carlson, R. and Srienc, F. (2004) Fundamental Escherichia coli biochemical pathways for biomass and energy production: creation of overall flux states. Biotechnol. Bioeng. 86, 149–162.

    Article  PubMed  CAS  Google Scholar 

  83. Pfeiffer, T., Schuster, S., and Bonhoeffer, T. (2001) Cooperation and competition in the evolution of ATP producing pathways. Science 292, 504–507.

    Article  PubMed  CAS  Google Scholar 

  84. Schuster, R. and Schuster, S. (1993) Refined algorithm and computer program for calculating all non-negative fluxes admissible in steady states of biochemical reaction systems with or without some flux rates fixed. Comp. Appl. Biosci. 9, 79–85.

    PubMed  CAS  Google Scholar 

  85. Poolman, M., Venkatesh, K., Pidcock, M., and Fell, D. (2004) A method for the determination of flux in elementary modes, and its application to Lactobacillus rhamnosus. Biotechnol. Bioeng. 88, 601–612.

    Article  PubMed  CAS  Google Scholar 

  86. Schilling, C. H., Edwards, J. S., Letscher, D., and Palsson, B. O. (2000) Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. Biotechnol. Bioeng. 71, 286–306.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Schuster, S., von Kamp, A., Pachkov, M. (2007). Understanding the Roadmap of Metabolism by Pathway Analysis. In: Weckwerth, W. (eds) Metabolomics. Methods in Molecular Biology™, vol 358. Humana Press. https://doi.org/10.1007/978-1-59745-244-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-244-1_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-561-3

  • Online ISBN: 978-1-59745-244-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics