Advertisement

Detecting Hierarchical Modularity in Biological Networks

  • Erzsébet Ravasz
Part of the Methods in Molecular Biology book series (MIMB, volume 541)

Abstract

Spatially or chemically isolated modules that carry out discrete functions are considered fundamental building blocks of cellular organization. However, detecting them in highly integrated biological networks requires a thorough understanding of the organization of these networks. In this chapter I argue that many biological networks are organized into many small, highly connected topologic modules that combine in a hierarchical manner into larger, less cohesive units. On top of a scale-free degree distribution, these networks show a power law scaling of the clustering coefficient with the node degree, a property that can be used as a signature of hierarchical organization. As a case study, I identify the hierarchical modules within the Escherichia coli metabolic network, and show that the uncovered hierarchical modularity closely overlaps with known metabolic functions.

Key words

Networks modularity hierarchical organization clustering coefficient metabolism 

References

  1. 1.
    Hartwell, L. H., Hopfield, J. J., Leibler, S., and Murray, A. W., From molecular to modular cell biology. Nature, 1999, 402:C47–C52.PubMedCrossRefGoogle Scholar
  2. 2.
    Kitano, H., Systems biology: A brief overview. Science, 2002, 295:1662–1664.PubMedCrossRefGoogle Scholar
  3. 3.
    Wolf, Y., Karev, G., and Koonin, E., Scale-free networks in biology: New insights into the fundamentals of evolution? Bioessays, 2002, 24:105–109.PubMedCrossRefGoogle Scholar
  4. 4.
    Lauffenburger, D., Cell signaling pathways as control modules: Complexity for simplicity. Proc. Natl. Acad. Sci. USA, 2000, 97:5031–5033.PubMedCrossRefGoogle Scholar
  5. 5.
    Rao, C. V., and Arkin, A. P., Control motifs for intracellular regulatory networks. Annu. Rev. Biomed. Eng., 2000, 3:391–419.CrossRefGoogle Scholar
  6. 6.
    Holter, N. S., Maritan, A., Cieplak, M., Fedoroff, N. V., and Banavar, J. R., Dynamic modeling of gene expression data. Proc. Natl. Acad. Sci. USA, 2001, 98:1693–1698.PubMedCrossRefGoogle Scholar
  7. 7.
    Hasty, J., McMillen, D., Isaacs, F., and Collins, J. J., Computational studies of gene regulatory networks: In numero molecular biology. Nat. Rev. Genet., 2001, 2:268–279.PubMedCrossRefGoogle Scholar
  8. 8.
    Shen-Orr, S., Milo, R., Mangan, S., and Alon, U., Network motifs in the transcriptional regulation network of E. coli. Nat. Genet., 2002, 31:64–68.PubMedCrossRefGoogle Scholar
  9. 9.
    Alon, U., Surette, M. G., Barkai, N., and Leibler, S., Robustness in bacterial chemotaxis. Nature, 1999, 397:168–171.PubMedCrossRefGoogle Scholar
  10. 10.
    Flajolet, M., Rotondo, G., Daviet, L., Bergametti, F., Inchauspe, G., Tiollais, P., Transy, C., and Legrain, P., A genomic approach to the Hepatitis C virus. Gene, 2000, 242:369–379.PubMedCrossRefGoogle Scholar
  11. 11.
    McGraith, S., Holtzman, T., Moss, B., and Fields, S., Genome-wide analysis of vaccinia virus protein-protein interactions. Proc. Natl. Acad. Sci. USA, 2000, 97:4879–4884.CrossRefGoogle Scholar
  12. 12.
    Rain, J. C., Selig, L., De Reuse, H., Battaglia, V., Reverdy, C., Simon, S., Lenzen, G., Petel, F., Wojcik, J., and Schachter, V., The protein-protein interaction map of Helicobacter pylori. Nature, 2001, 409:211–215.PubMedCrossRefGoogle Scholar
  13. 13.
    Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y., A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA, 2001, 98:4569–4574.PubMedCrossRefGoogle Scholar
  14. 14.
    Ito, T., Tashiro, K., Muta, S., Ozawa, R., Chiba, T., Nishizawa, M., Yamamoto, K., Kuhara, S., and Sakaki, Y., Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc. Natl. Acad. Sci. USA, 2000, 97:1143–1147.PubMedCrossRefGoogle Scholar
  15. 15.
    Schwikowski, B., Uetz, P., and Fields, S., A network of protein-protein interactions in yeast. Nat. Biotechnol., 2000, 18:257–1261.CrossRefGoogle Scholar
  16. 16.
    Uetz, P., Giot, L., Cagney, G., Mansfield, T., Judson, R., Knight, J., Lockshorn, D., Narayan, V., Srinivasan, M., and Pochart, P., A comprehensive analysis of protein-protein interactions of Saccharomyces cerevisiae. Nature, 2000, 403:623–627.PubMedCrossRefGoogle Scholar
  17. 17.
    Gavin, A., Bösche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J., and Michon, A.-M., Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 2002, 415:141–147.PubMedCrossRefGoogle Scholar
  18. 18.
    Ho, Y., Gruhler, A., Heilbut, A., Bader, G., Moore, L., Adams, S.-L., Millar, A., Taylor, P., Bennett, K., and Boutillier, K., Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature, 2002, 415:180–183.PubMedCrossRefGoogle Scholar
  19. 19.
    Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., and Barabási, A.-L., The large-scale organization of metabolic networks. Nature, 2000, 407:651–654.PubMedCrossRefGoogle Scholar
  20. 20.
    Walhout, A., Sordella, R., Lu, X., Hartley, J., Temple, G., Brasch, M., Thierry-Mieg, N., and Vidal, M., Protein interaction mapping in C. elegans using proteins involved in vulval development. Science, 2000, 287:116–122.PubMedCrossRefGoogle Scholar
  21. 21.
    Giot, L., Bader, J. S., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., Hao, Y. L., Ooi, C. E., Godwin, B., Vitols, E. et al., A protein interaction map of Drosophila melanogaster. Science, 2003, 302:1727–1735.PubMedCrossRefGoogle Scholar
  22. 22.
    Thieffry, D., Huerta, A. M., Perez-Rueda, E., and Collado-Vides, J., From specific gene regulation to genomic networks: A global analysis of transcriptional regulation in Escherichia coli. Bioessays, 1998, 20:433–440.PubMedCrossRefGoogle Scholar
  23. 23.
    Salgado, H., Santos-Zavaleta, A., Gama-Castro, S., Millán-Zárate, D., Díaz-Peredo, E., Sánchez-Solano, F., Pérez-Rueda, E., Bonavides-Martínez, C., and Collado-Vides, J., RegulonDB (version 3.2): Transcriptional regulation and operon organization in Escherichia coli K-12. Nuc. Acids Res., 2001, 29:72–74.CrossRefGoogle Scholar
  24. 24.
    Costanzo, M. C., Crawford, M. E., Hirschman, J. E., Kranz, J. E., Olsen, P., Robertson, L. S., Skrzypek, M. S., Braun, B. R., Hopkins, K. L., Kondu, P. et al., YPDTM, PombePDTM and WormPDTM:model organism volumes of the BioKnowledgeTM Library, an integrated resource for protein information. Nuc. Acids Res., 2001, 29:75–79.CrossRefGoogle Scholar
  25. 25.
    Mangan, S., and Alon, U., The structure and function of the feed-forward loop network motif. Proc. Natl. Acad. Sci. USA, 2003, 100:11980–11985.PubMedCrossRefGoogle Scholar
  26. 26.
    Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U., Network motifs: Simple building blocks of complex networks. Science, 2002, 298:824–827.PubMedCrossRefGoogle Scholar
  27. 27.
    Lee, T. I., Rinaldi, N. J., Robert, F., Odom, D. T., Bar-Joseph, Z., Gerber, G. K., Hannett, N. M., Harbison, C. T., Thompson, C. M., Simon, I. et al., Transcriptional regulatory networks in Saccharomyces cerevisiae. Science, 2002, 298:799–804.PubMedCrossRefGoogle Scholar
  28. 28.
    Overbeek, R., Larsen, N., Pusch, G., D'Souza, M., Selkov, E., Jr, Kyrpides, N., Fonstein, M., Maltsev, N., and Selkov, E., WIT: Integrated system for high-throughput genome sequence analysis and metabolic reconstruction. Science, 2000, 28:123–125.Google Scholar
  29. 29.
    Karp, P. D., Riley, M., Saier, M., Paulsen, I., Paley, S., and Pellegrini-Toole, A., The EcoCyc and MetaCyc databases. Nucl. Acids Res., 2000, 28:56–59.PubMedCrossRefGoogle Scholar
  30. 30.
    Fell, D. A., and Wagner, A., The small world of metabolism. Nat. Biotechnol., 2000, 189:1121–1122.CrossRefGoogle Scholar
  31. 31.
    Wagner, A., and Fell, D. A., The small world inside large metabolic networks. Proc. Roy. Soc. London Series B, 2001, 268:1803–1810.CrossRefGoogle Scholar
  32. 32.
    Albert, R., and Barabási, A.-L., Statistical mechanics of complex networks. Rev. Mod. Phys., 2002, 74:67–97.CrossRefGoogle Scholar
  33. 33.
    Newman, M. E. J., The structure and function of complex networks. SIAM Rev., 2003, 45:167–256.CrossRefGoogle Scholar
  34. 34.
    Dorogovtsev, S. N., and Mendes, J. F. F., Evolution of networks. Adv. Phys., 2002, 51:1079–1187.CrossRefGoogle Scholar
  35. 35.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D.-U., Complex networks: Structure and dynamics. Phys. Rep., 2006, 424:175–308.CrossRefGoogle Scholar
  36. 36.
    Barabási, A.-L., Linked: The New Science of Networks, 2002, Perseus Publishing, Cambridge, MA.Google Scholar
  37. 37.
    Newman, M. E. J., Barabási, A.-L., and Watts, D. J. (eds.), The Structure and Dynamics of Complex Networks, 2003, Princeton University Press, Princeton.Google Scholar
  38. 38.
    Pastor-Satorras, R., Rubi, M., and Diaz-Guilera, A. (eds.), Statistical Mechanics of Complex Networks, Lecture Notes in Physics, 2003, 625, Springer Verlag, Berlin, Germany.Google Scholar
  39. 39.
    Mendes, J. F. F., Dorogovtsev, S. N., Povolotsky, A., Abreu, F. V., and Oliveira, J. G. (eds.), Science of Complex Networks. From Biology to the Internet and WWW, AIP Conference Proceedings, 2004, 776, American Institute of Physics, New York.Google Scholar
  40. 40.
    Ben-Naim, E., Frauenfelder, H., and Toroczkai, Z. (eds.), Complex Networks, Lecture Notes in Physics, 2004, 650, Springer Verlag, Berlin/Heidelberg, Germany.Google Scholar
  41. 41.
    Bornholdt, S., and Schuster, H. G. (eds.), Handbook of Graphs and Networks: From the Genome to the Internet, 2002, Wiley-VCH, Berlin.Google Scholar
  42. 42.
    Watts, D. J., and Strogatz, S. H., Collective dynamics of small-world networks. Nature, 1998, 393:440–442.PubMedCrossRefGoogle Scholar
  43. 43.
    Jeong, H., Mason, S., Barabási, A.-L., and Oltvai, Z. N., Lethality and centrality in protein networks. Nature, 2001, 411:41–42.PubMedCrossRefGoogle Scholar
  44. 44.
    Wagner, A., The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol. Biol. Evol., 2001, 18:1283–1292.PubMedGoogle Scholar
  45. 45.
    Albert, R., Jeong, H., and Barabási, A.-L., Diameter of the world-wide web. Nature, 1999, 401:130–131.CrossRefGoogle Scholar
  46. 46.
    Barabási, A.-L., Albert, R., and Jeong, H., Mean-field theory for scale-free random networks. Physica A, 1999, 272:173–187.CrossRefGoogle Scholar
  47. 47.
    Barabási, A.-L., and Albert, R., Emergence of scaling in random networks. Science, 1999, 286:509–512.PubMedCrossRefGoogle Scholar
  48. 48.
    Newman, M. E. J., The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA, 2001, 98:404–409.PubMedCrossRefGoogle Scholar
  49. 49.
    Barabási, A.-L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., and Vicsek, T., Evolution of the social network of scientific collaborations. Physica A, 2002, 311:590–614.CrossRefGoogle Scholar
  50. 50.
    Newman, M. E. J., Scientific collaboration networks. I. Network construction and fundamental results. Phys. Rev. E, 2001, 64:016131.CrossRefGoogle Scholar
  51. 51.
    Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., and Barabási, A.-L., Hierarchical organization of modularity in metabolic networks. Science, 2002, 297:1551–1555.PubMedCrossRefGoogle Scholar
  52. 52.
    Ravasz, E., and Barabási, A.-L., Hierarchical organization in complex networks. Phys. Rev. E, 2002, 67:026122.Google Scholar
  53. 53.
    Barabási, A.-L., Ravasz, E., and Vicsek, T., Deterministic scale-free networks. Physica A, 2001, 299:559–564.CrossRefGoogle Scholar
  54. 54.
    Schilling, C. H., Letscher, D., and Palsson, B. O., Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J. Theor. Biol., 2000, 203:229–248.PubMedCrossRefGoogle Scholar
  55. 55.
    Schuster, H. G., Complex Adaptive Systems, 2002, Scator Verlag, Saarbruskey, Germany.Google Scholar
  56. 56.
    Dorogovtsev, S. N., Goltsev, A. V., and Mendes, J. F. F., Pseudofractal Scale-free Web. Phys. Rev. E, 2002, 65:066122.CrossRefGoogle Scholar
  57. 57.
    Erdős, P., and Rényi, A., On random graphs I. Publ. Math. (Debrecen), 1959, 6:290–297.Google Scholar
  58. 58.
    Bollobás, B., Random Graphs, 1985, Academic Press, London.Google Scholar
  59. 59.
    Newman, M. E. J., Models of the small world. J. Stat. Phys., 2000, 101:819–841.CrossRefGoogle Scholar
  60. 60.
    Albert, R., Jeong, H., and Barabási, A.-L., Error and attack tolerance of complex networks. Nature, 2000, 406:378–382.PubMedCrossRefGoogle Scholar
  61. 61.
    Cohen, R., Erez, K., Ben-Avraham, D., and Havlin, S., Breakdown of the internet under intentional attack. Phys. Rev. Lett., 2001, 86:3682–3685.PubMedCrossRefGoogle Scholar
  62. 62.
    Pastor-Satorras, R., and Vespignani, A., Epidemic spreading in scale-free networks. Phys. Rev. Lett., 2001, 86:3200–3203.PubMedCrossRefGoogle Scholar
  63. 63.
    Xenarios, I., Rice, D. W., Salwinski, L., Baron, M. K., Marcotte, E. M., and Eisenberg, D. M. S., DIP: The Database of Interacting Proteins. Nucl. Acids. Res., 2000, 28:289–291.PubMedCrossRefGoogle Scholar
  64. 64.
    Xenarios, I., Fernandez, E., Salwinski, L., Duan, X., Thompson, M., Marcotte, E., and Eisenberg, D., DIP: The Database of Interacting Proteins: 2001 update. Nucl. Acids Res., 2001, 29:239–241.PubMedCrossRefGoogle Scholar
  65. 65.
    Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D., Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA, 1998, 95:14863–14868.PubMedCrossRefGoogle Scholar
  66. 66.
    Sokal, J., Numerical Taxonomy, 1973, Freeman, San Francisco.Google Scholar
  67. 67.
    Klemm, K., and Eguíluz, V. M., Growing scale-free networks with small-world behavior. Phys. Rev. E, 2002, 65:057102.CrossRefGoogle Scholar
  68. 68.
    Vázquez, A., Moreno, Z., Boguñá, M., Pastor-Satorras, R., and Vespignani, A., Topology and correlations in structured scale-free networks. Phys. Rev. E, 2003, 67:046111.CrossRefGoogle Scholar
  69. 69.
    Girvan, M., and Newman, M. E. J., Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA, 2002, 99:7821–7826.PubMedCrossRefGoogle Scholar
  70. 70.
    Holme, P., Huss, M., and Jeong, H., Subnetwork hierarchies in biochemical pathways. Bioinformatics, 2003, 19:532–538.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Erzsébet Ravasz
    • 1
  1. 1.Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA

Personalised recommendations