Skip to main content

Prediction and Integration of Regulatory and Protein–Protein Interactions

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 541))

Abstract

Knowledge of transcriptional regulatory interactions (TRIs) is essential for exploring functional genomics and systems biology in any organism. While several results from genome-wide analysis of transcriptional regulatory networks are available, they are limited to model organisms such as yeast ( 1 ) and worm ( 2 ). Beyond these networks, experiments on TRIs study only individual genes and proteins of specific interest. In this chapter, we present a method for the integration of various data sets to predict TRIs for 54 organisms in the Bioverse ( 3 ). We describe how to compile and handle various formats and identifiers of data sets from different sources and how to predict TRIs using a homology-based approach, utilizing the compiled data sets. Integrated data sets include experimentally verified TRIs, binding sites of transcription factors, promoter sequences, protein subcellular localization, and protein families. Predicted TRIs expand the networks of gene regulation for a large number of organisms. The integration of experimentally verified and predicted TRIs with other known protein–protein interactions (PPIs) gives insight into specific pathways, network motifs, and the topological dynamics of an integrated network with gene expression under different conditions, essential for exploring functional genomics and systems biology.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lee, T.I., et al., Transcriptional regulatory networks in Saccharomyces cerevisiae. Science, 2002. 298(5594): 799–804.

    PubMed  CAS  Google Scholar 

  2. Deplancke, B., et al., A gene-centered C. elegans protein-DNA interaction network. Cell, 2006. 125(6): 1193–1205.

    PubMed  CAS  Google Scholar 

  3. McDermott, J., et al., BIOVERSE: Enhancements to the framework for structural, functional and contextual modeling of proteins and proteomes. Nucl. Acids Res., 2005. 33(suppl_2): W324–W325.

    PubMed  CAS  Google Scholar 

  4. H Caron, et al., The Human Transcriptome Map reveals a clustering of highly expressed genes in chromosomal domains. Science, 2001. 291: 1289–1292.

    Google Scholar 

  5. Shen-Orr, S.S., et al., Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet., 2002. 31(1): 64–68.

    PubMed  CAS  Google Scholar 

  6. Martinez-Antonio, A. and J. Collado-Vides, Identifying global regulators in transcriptional regulatory networks in bacteria. Curr. Opin. Microbiol., 2003. 6(5): 482–489.

    PubMed  CAS  Google Scholar 

  7. Harbison, C.T., et al., Transcriptional regulatory code of a eukaryotic genome. Nature, 2004. 431(7004): 99.

    PubMed  CAS  Google Scholar 

  8. Proft, M., et al., Genomewide identification of Sko1 target promoters reveals a regulatory network that operates in response to osmotic stress in Saccharomyces cerevisiae. Eukaryot. Cell, 2005. 4(8): 1343–1352.

    PubMed  CAS  Google Scholar 

  9. Sharma, M.R., et al., Transcriptional networks in a rat model for nonalcoholic fatty liver disease: A microarray analysis. Exp. Mol. Pathol., 2006. [Epub ahead of print].

    Google Scholar 

  10. Reymann, S. and J. Borlak, Transcriptome profiling of human hepatocytes treated with Aroclor 1254 reveals transcription factor regulatory networks and clusters of regulated genes. BMC Genomics, 2006. 7(1): 217.

    PubMed  Google Scholar 

  11. Makita, Y., et al., DBTBS: Database of transcriptional regulation in Bacillus subtilis and its contribution to comparative genomics. Nucl. Acids Res., 2004. 32(suppl_1): D75–D77.

    PubMed  CAS  Google Scholar 

  12. Matys, V., et al., TRANSFAC(R) and its module TRANSCompel(R): Transcriptional gene regulation in eukaryotes. Nucl. Acids Res., 2006. 34(suppl_1): D108–D110.

    PubMed  CAS  Google Scholar 

  13. Salgado, H., et al., RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucl. Acids Res., 2006. 34(suppl_1): D394–D397.

    PubMed  CAS  Google Scholar 

  14. Segal, E., et al., Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet., 2003. 34(2): 166–176.

    PubMed  CAS  Google Scholar 

  15. Pilpel, Y., P. Sudarsanam, and G. M. Church, Identifying regulatory networks by combinatorial analysis of promoter elements. Nat. Genet., 2003. 29: 153–159.

    Google Scholar 

  16. Yeger-Lotem, E., et al., Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. PNAS, 2004. 101(16): 5934–5939.

    PubMed  CAS  Google Scholar 

  17. Yu, T. and K.-C. Li, Inference of transcriptional regulatory network by two-stage constrained space factor analysis. Bioinformatics, 2005. 21(21): 4033–4038.

    PubMed  CAS  Google Scholar 

  18. Zhang, L., et al., Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J. Biol., 2005. 4(2): 6.

    PubMed  CAS  Google Scholar 

  19. Jiang, R., et al., Network motif identification in stochastic networks. PNAS, 2006. 103(25): 9404–9409.

    PubMed  CAS  Google Scholar 

  20. Mandel-Gutfreund, Y. and H. Margalit, Quantitative parameters for amino acid-base interaction: Implications for prediction of protein-DNA binding sites. Nucl. Acids Res., 1998. 26(10): 2306–2312.

    PubMed  CAS  Google Scholar 

  21. Luscombe, N.M. and J.M. Thornton, Protein–DNA interactions: Amino acid conservation and the effects of mutations on binding specificity. J. Mol. Biol., 2002. 320(5): 991–1009.

    PubMed  CAS  Google Scholar 

  22. Kato, M., et al., Identifying combinatorial regulation of transcription factors and binding motifs. Genome Biol., 2004. 5(8): R56.

    PubMed  Google Scholar 

  23. Morozov, A.V., et al., Protein-DNA binding specificity predictions with structural models. Nucl. Acids Res., 2005. 33(18): 5781–5798.

    PubMed  CAS  Google Scholar 

  24. Gertz, J., et al., Discovery, validation, and genetic dissection of transcription factor binding sites by comparative and functional genomics. Genome Res., 2005. 15(8): 1145–1152.

    PubMed  CAS  Google Scholar 

  25. Tompa, M., et al., Assessing computational tools for the discovery of transcription factor binding sites. Nat. Biotechnol., 2005. 23: 137–144.

    PubMed  CAS  Google Scholar 

  26. GuhaThakurta, D., Computational identification of transcriptional regulatory elements in DNA sequence. Nucl. Acids Res., 2006. 34(12): 3585–3598, doi: 10.1093/nar/gkl372.

    PubMed  CAS  Google Scholar 

  27. Yu, H., et al., Annotation transfer between genomes: Protein-protein interologs and protein-DNA regulogs. Genome Res., 2004. 14(6): 1107–1118.

    PubMed  CAS  Google Scholar 

  28. Du, W., et al., RBF, a novel RB-related gene that regulates E2F activity and interacts with cyclin E in Drosophila. Genes Dev., 1996. 10(10): 1206–1218.

    PubMed  CAS  Google Scholar 

  29. Walhout, A.J.M., et al., Protein interaction mapping in C. elegans using proteins involved in vulval development. Science, 2000. 287: 116–122.

    PubMed  CAS  Google Scholar 

  30. Matthews, L.R., et al., Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or “Interologs”. Genome Res., 2001. 11(12): 2120–2126.

    PubMed  CAS  Google Scholar 

  31. Lehner, B. and A.G. Fraser, A first-draft human protein-interaction map. Genome Biol., 2004. 5(9): R63.1–9.

    Google Scholar 

  32. Huang, T.-W., et al., POINT: A database for the prediction of protein-protein interactions based on the orthologous interactome. Bioinformatics, 2004. 20(17): 3273–3276.

    PubMed  CAS  Google Scholar 

  33. Kemmer, D., et al., Ulysses – an application for the projection of molecular interactions across species. Genome Biol., 2005. 6(12): R106.

    PubMed  Google Scholar 

  34. Brown, K.R. and I. Jurisica, Online predicted human interaction database. Bioinformatics, 2005. 21(9): 2076–2082.

    PubMed  CAS  Google Scholar 

  35. von Mering, C., et al., STRING: Known and predicted protein-protein associations, integrated and transferred across organisms. Nucl. Acids Res., 2005. 33(suppl_1): D433–D437.

    Google Scholar 

  36. Zhu, J. and M.Q. Zhang, SCPD: A promoter database of the yeast Saccharomyces cerevisiae. Bioinformatics, 1999. 15(7): 607–611.

    PubMed  CAS  Google Scholar 

  37. Bader, G.D., D. Betel, and C.W. Hogue, BIND: The biomolecular interaction network database. Nucl. Acids Res., 2003. 31(1): 248–250.

    PubMed  CAS  Google Scholar 

  38. Alfarano, C., et al., The biomolecular interaction network database and related tools 2005 update. Nucl. Acids Res., 2005. 33(suppl_1): D418–D424, doi: 10.1093/nar/gki051.

    PubMed  CAS  Google Scholar 

  39. Chen, N., et al., WormBase: A comprehensive data resource for Caenorhabditis biology and genomics. Nucl. Acids Res., 2005. 33(suppl_1): D383–D389.

    PubMed  CAS  Google Scholar 

  40. Schwarz, E.M., et al., WormBase: Better software, richer content. Nucl. Acids Res., 2006. 34(suppl_1): D475–D478, doi: 10.1093/nar/gkj061.

    PubMed  CAS  Google Scholar 

  41. Hayakawa, J., et al., Identification of promoters bound by c-Jun/ATF2 during rapid large-scale gene activation following genotoxic stress. Mol. Cell, 2004. 16(4): 521.

    PubMed  CAS  Google Scholar 

  42. Kim, J., et al., Mapping DNA-protein interactions in large genomes by sequence tag analysis of genomic enrichment. Nat. Meth., 2005. 2(1): 47.

    CAS  Google Scholar 

  43. Kim, T.H., et al., Direct isolation and identification of promoters in the human genome. Genome Res., 2005. 15(6): 830–839.

    PubMed  CAS  Google Scholar 

  44. Hong, E.L., et al., Saccharomyces Genome Database. http://ftp://ftp.yeastgenome.org/yeast/, 2006.

  45. Hinrichs, A.S., et al., The UCSC genome browser database: Update 2006. Nucl. Acids Res., 2006. 34(suppl_1): D590–D598.

    PubMed  CAS  Google Scholar 

  46. Michael, J.M., Initial sequencing and analysis of the human genome. Nature, 2001. 409(6822): 860.

    Google Scholar 

  47. Waterston, R.H., et al., Initial sequencing and comparative analysis of the mouse genome. Nature, 2002. 420(6915): 520.

    PubMed  CAS  Google Scholar 

  48. Gibbs, R.A., et al., Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature, 2004. 428(6982): 493.

    PubMed  CAS  Google Scholar 

  49. Adams, M.D., et al., The genome sequence of drosophila melanogaster. Science, 2000. 287(5461): 2185–2195.

    PubMed  Google Scholar 

  50. The C. elegans Sequencing Consortium, Genome sequence of the nematode C. elegans: A platform for investigating biology. Science, 1998. 282(5396): 2012–2018.

    Google Scholar 

  51. Rhee, S.Y., et al., The Arabidopsis Information Resource (TAIR): A model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucl. Acids Res., 2003. 31(1): 224–228.

    PubMed  CAS  Google Scholar 

  52. The Arabidopsis Genome, I., Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000. 408(6814): 796.

    Google Scholar 

  53. Theologis, A., et al., Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature, 2000. 408(6814): 816.

    PubMed  Google Scholar 

  54. European Union Chromosome 3 Arabidopsis Genome Sequencing, C., R. The Institute for Genomic, and D.N.A.R.I. Kazusa, Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana. Nature, 2000. 408(6814): 820.

    Google Scholar 

  55. Kazusa, D.N.A.R.I., et al., Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana. Nature, 2000. 408(6814): 823.

    Google Scholar 

  56. Yuan, Q., et al., The institute for genomic research Osa1 rice genome annotation database. Plant Physiol., 2005. 138(1): 18–26.

    PubMed  CAS  Google Scholar 

  57. Goff, S.A., et al., A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 2002. 296(5565): 92–100.

    PubMed  CAS  Google Scholar 

  58. HUGO Gene Nomenclature Committee http://www.genenames.org/data/gdlw_index.html September 2006.

  59. Online Mendelian Inheritance in Man, OMIM (TM). McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology Information, National Library of Medicine (Bethesda, MD), {September 2006}. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/

  60. Huh, W.-K., et al., Global analysis of protein localization in budding yeast. Nature, 2003. 425: 686–691.

    PubMed  CAS  Google Scholar 

  61. Drawid, A., R. Jansen, and M. Gerstein, Genome-wide analysis relating expression level with protein subcellular localization. Trends Genet., 2000. 16(10): 426.

    PubMed  CAS  Google Scholar 

  62. Ross-Macdonald, P., et al., Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature, 1999. 402(6760): 413.

    PubMed  CAS  Google Scholar 

  63. Kumar, A., et al., TRIPLES: A database of gene function in Saccharomyces cerevisiae. Nucl. Acids Res., 2000. 28(1): 81–84.

    PubMed  CAS  Google Scholar 

  64. Tatiana, T.A. and T.L. Madden, Blast 2 sequences – a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett., 1999. 174: 247–250.

    Google Scholar 

  65. Altschul, S.F., et al., Basic local alignment search tool. J. Mol. Biol., 1990. 215(3): 403–410.

    PubMed  CAS  Google Scholar 

  66. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucl., Acids Res., 1997. 25(17): 3389–3402.

    CAS  Google Scholar 

  67. Smith, T.F. and M.S. Waterman, Identification of common molecular subsequences. J. Mol. Biol., 1981. 147(1): 195–197.

    PubMed  CAS  Google Scholar 

  68. Pearson, W.R., Searching protein sequence libraries: Comparison of the sensitivity and selectivity of the Smith-Waterman and FASTA algorithms. Genomics, 1991. 11(3): 635–650.

    PubMed  CAS  Google Scholar 

  69. Thompson, J.D., D.G. Higgins, and T.J. Gibson, CLUSTAL W: Improving the sensitivity of progressivemultiple sequence alignment through sequence weighting,position-specific gap penalties and weight matrix choice. Nucl. Acids Res., 1994. 22(22): 4673–4680.

    PubMed  CAS  Google Scholar 

  70. Yu, J., et al., A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002. 296(5565): 79–92.

    PubMed  CAS  Google Scholar 

  71. Donna Maglott, et al., Entrez Gene: Gene-centered information at NCBI. Nucl. Acids Res., 2005. 33(Database): D54–D58.

    Google Scholar 

  72. Bashton, M. and C. Chothia, The geometry of domain combination in proteins. J. Mol. Biol., 2002. 315(4): 927.

    PubMed  CAS  Google Scholar 

  73. Bjorklund, A.K., et al., Domain rearrangements in protein evolution. J. Mol. Biol., 2005. 353(4): 911.

    PubMed  Google Scholar 

  74. Geer, L.Y., et al., CDART: Protein homology by domain architecture. Genome Res., 2002. 12(10): 1619–1623, doi: 10.1101/gr.278202,.

    PubMed  CAS  Google Scholar 

  75. Hegyi, H. and M. Gerstein, Annotation transfer for genomics: Measuring functional divergence in multi-domain proteins. Genome Res., 2001. 11(10): 1632–1640, doi: 10.1101/gr. 183801.

    PubMed  CAS  Google Scholar 

  76. The UniProt Consortium, The Universal Protein Resource (UniProt). Nucl. Acids Res., 2007. 35(suppl_1): D193–D197, doi: 10.1093/nar/gkl929.

    Google Scholar 

  77. Luscombe, N.M., et al., Genomic analysis of regulatory network dynamics reveals large topological changes. Nature, 2004. 431: 308–312.

    PubMed  CAS  Google Scholar 

  78. Guldener, U., et al., CYGD: The comprehensive yeast genome database. Nucl. Acids Res., 2005. 33(suppl_1): D364–D368, doi: 10.1093/nar/gki053.

    PubMed  CAS  Google Scholar 

  79. Andreoli, C., et al., MitoP2, an integrated database on mitochondrial proteins in yeast and man. Nucl. Acids Res., 2004. 32(1): D459–D462.

    PubMed  CAS  Google Scholar 

  80. Fink, J.L., et al., LOCATE: A mouse protein subcellular localization database. Nucl. Acids Res., 2006. 34(suppl_1): D213–D217, doi: 10.1093/nar/gkj069.

    PubMed  CAS  Google Scholar 

  81. Nakai, K. and P. Horton, PSORT: A program for detecting the sorting signals of proteins and predicting their subcellular localization. Trends Biochem. Sci., 1999. 24(1): 34–35.

    PubMed  CAS  Google Scholar 

  82. Drawid, A. and M. Gerstein, A Bayesian system integrating expression data with sequence patterns for localizing proteins: Comprehensive application to the yeast genome. J. Mol. Biol., 2000. 301: 1059–1075.

    PubMed  CAS  Google Scholar 

  83. Nair, R. and B. Rost, LOC3D: Annotate sub-cellular localization for protein structures. Nucl. Acids Res., 2003. 31(13): 3337–3340.

    PubMed  CAS  Google Scholar 

  84. Olof Emanuelsson, et al., Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol., 2000. 300: 1005–1016.

    Google Scholar 

  85. Hua, S. and Z. Sun, Support vector machine approach for protein subcellular localization prediction. Bioinformatics, 2001. 17(8): 721–728.

    PubMed  CAS  Google Scholar 

  86. Mulder, N.J., et al., InterPro, progress and status in 2005. Nuc. Acids Res., 2005. 33(Database issue): D201–D205.

    CAS  Google Scholar 

  87. Mulder, N.J., et al., New developments in the InterPro database. Nucl. Acids Res., 2007. 35(suppl_1): D224–D228, doi: 10.1093/nar/gkl841.

    PubMed  CAS  Google Scholar 

  88. Finn, R.D., et al., Pfam: Clans, web tools and services. Nucl. Acids Res., 2006. 34(Database issue): D247–D251.

    PubMed  CAS  Google Scholar 

  89. Hulo, N., et al., The PROSITE database. Nucl. Acids Res., 2006. 34(Database issue): D227–D230.

    PubMed  CAS  Google Scholar 

  90. Catherine B., et al., The ProDom database of protein domain families: More emphasis on 3D. Nucl. Acids Res., 2005. 33(Database Issue): D212–D215.

    Google Scholar 

  91. Henikoff, S., J.G. Henikoff, and S. Pietrokovski, Blocks+: A non-redundant database of protein alignment blocks dervied from multiple compilations. Bioinformatics, 1999. 15(6): 471–479.

    PubMed  CAS  Google Scholar 

  92. Henikoff, J.G., et al., Increased coverage of protein families with the blocks database servers. Nucl. Acids Res., 2000. 28: 228–230.

    PubMed  CAS  Google Scholar 

  93. Attwood, T.K., et al., PRINTS and its automatic supplement, prePRINTS. Nucl. Acids Res., 2003. 31: 400–402.

    PubMed  CAS  Google Scholar 

  94. Haft, D.H., J.D. Selengut, and O. White, The TIGRFAMs database of protein families. Nucl. Acids Res., 2003. 31: 371–373.

    PubMed  CAS  Google Scholar 

  95. Meinel, T., A. Krause, H. Luz, M. Vingron, and E. Staub, The SYSTERS protein family database in 2005. Nucl. Acids Res., 2005. 33(Database issue): D226–D229.

    PubMed  CAS  Google Scholar 

  96. Murzin, A.G., et al., SCOP: A structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol., 1995. 247: 536–540.

    PubMed  CAS  Google Scholar 

  97. Andreeva A., et al., SCOP database in 2004: Refinements integrate structure and sequence family data. Nucl. Acid Res., 2004. 32: D226–D229.

    CAS  Google Scholar 

  98. Letunic, I., et al., SMART 5: Domains in the context of genomes and networks. Nucl. Acids Res., 2006. 34(suppl_1): D257–D260, doi: 10.1093/nar/gkj079.

    PubMed  CAS  Google Scholar 

  99. Gough, J., et al., Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J. Mol. Biol., 2001. 313(4): 903–919.

    PubMed  CAS  Google Scholar 

  100. Gough, J. and C. Chothia, SUPERFAMILY: HMMs representing all proteins of known structure. SCOP sequence searches, alignments and genome assignments. Nucl. Acids Res., 2002. 30(1): 268–272, doi: 10.1093/nar/30.1.268.

    PubMed  CAS  Google Scholar 

  101. Pearl, F., et al., The CATH domain structure database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis. Nucl. Acids Res., 2005. 33(suppl_1): D247–D251, doi: 10.1093/nar/gki024.

    PubMed  CAS  Google Scholar 

  102. Yeats, C., et al., Gene3D: Modelling protein structure, function and evolution. Nucl. Acids Res., 2006. 34(suppl_1): D281–D284, doi: 10.1093/nar/gkj057.

    PubMed  CAS  Google Scholar 

  103. Wu, C.H., et al., PIRSF: Family classification system at the protein information resource. Nucl. Acids Res., 2004. 32(suppl_1): D112–D114, %R 10.1093/nar/gkh097.

    PubMed  CAS  Google Scholar 

  104. Mi, H., et al., The PANTHER database of protein families, subfamilies, functions and pathways. Nucl. Acids Res., 2005. 33(suppl_1): D284–D288, 10.1093/nar/gki078.

    PubMed  CAS  Google Scholar 

  105. Mi, H., et al., PANTHER version 6: Protein sequence and function evolution data with expanded representation of biological pathways. Nucl. Acids Res., 2007. 35(suppl_1): D247–D252, doi: 10.1093/nar/gkl869.

    PubMed  CAS  Google Scholar 

  106. Marchler-Bauer, A., et al., CDD: A conserved domain database for protein classification. Nucl. Acids Res., 2005. 33(suppl_1): D192–D196, doi: 10.1093/nar/gki069.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Searle Scholar Award and NSF Grant DBI-0217241 to R.S., and the University of Washington’s Advanced Technology Initiative in Infectious Diseases. Also, it is supported in part by the National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science Technology & Development Agency (NSTDA), Thailand.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wichadakul, D., McDermott, J., Samudrala, R. (2009). Prediction and Integration of Regulatory and Protein–Protein Interactions. In: Ireton, R., Montgomery, K., Bumgarner, R., Samudrala, R., McDermott, J. (eds) Computational Systems Biology. Methods in Molecular Biology, vol 541. Humana Press. https://doi.org/10.1007/978-1-59745-243-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-243-4_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-905-5

  • Online ISBN: 978-1-59745-243-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics