Comparing Algorithms for Clustering of Expression Data: How to Assess Gene Clusters

  • Golan Yona
  • William Dirks
  • Shafquat Rahman
Part of the Methods in Molecular Biology book series (MIMB, volume 541)


Clustering is a popular technique commonly used to search for groups of similarly expressed genes using mRNA expression data. There are many different clustering algorithms and the application of each one will usually produce different results. Without additional evaluation, it is difficult to determine which solutions are better.

In this chapter we discuss methods to assess algorithms for clustering of gene expression data. In particular, we present a new method that uses two elements: an internal index of validity based on the MDL principle and an external index of validity that measures the consistency with experimental data. Each one is used to suggest an effective set of models, but it is only the combination of both that is capable of pinpointing the best model overall. Our method can be used to compare different clustering algorithms and pick the one that maximizes the correlation with functional links in gene networks while minimizing the error rate. We test our methods on several popular clustering algorithms as well as on clustering algorithms that are specially tailored to deal with noisy data. Finally, we propose methods for assessing the significance of individual clusters and study the correspondence between gene clusters and biochemical pathways.

Key words

Microarrays mRNA expression clustering evaluation 



This work is supported by the National Science Foundation under Grant No. 0218521, as part of the NSF/NIH Collaborative Research in Computational Neuroscience Program.


  1. 1.
    Spellman, P.T., Sherlock, G., Zhang, M., Iyer, V., Eisen, M., Brown, P., Botstein, D. & Futcher, B. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by Microarray Hybridization. Mol. Bio. Cell. 9, 3273–3297.Google Scholar
  2. 2.
    Hughes, T., Marton, M., Jones, A., Roberts, C., Stoughton, R., Armour, C., Bennett, H., Coffey, E., Dai, H., He, Y., Kidd, M., King, A., Meyer, M., Slade, D., Lum, P., Stepaniants, S., Shoemaker, D., Gachotte, D., Chakraburtty, K., Simon, J., Bard, M. & Friend, S. (2000). Functional discovery via a compendium of expression profiles. Cell. 102, 109–126.PubMedCrossRefGoogle Scholar
  3. 3.
    Liu, E.T. (2003). Classification of cancers by expression profiling. Curr. Opin. Genet. Dev. 13, 97–103.PubMedCrossRefGoogle Scholar
  4. 4.
    McCormick, S.M., Frye S.R., Eskin, S.G., Teng, C.L., Lu, C.M., Russell, C.G., Chittur, K.K. & McIntire L.V. (2003). Microarray analysis of shear stressed endothelial cells. Biorheology, 40, 5–11.PubMedGoogle Scholar
  5. 5.
    Yeatman, T.J. (2003). The future of clinical cancer management: one tumor, one chip. Am. Surg. 69, 41–44.PubMedGoogle Scholar
  6. 6.
    Yoo, M.S., Chun, H.S., Son, J.J., DeGiorgio, L.A., Kim, D.J., Peng, C. & Son J.H. (2003). Brain research. Mol. Brain Res. 110, 76–84.PubMedCrossRefGoogle Scholar
  7. 7.
    Jain, A.K. & Dubes, R.C. (1988).”Algorithms for clustering data”. Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  8. 8.
    Jain, A.K., Murthy, M.N. & Flynn, P.J. (1999). Data clustering: a review. ACM Comput. Surv.. 31, 264–323.CrossRefGoogle Scholar
  9. 9.
    Boutros, P.C. & Okey, A.B. (2005). Unsupervised pattern recognition: an introduction to the whys and wherefores of clustering microarray data. Brief Bioinform. 6, 33 1–343.PubMedCrossRefGoogle Scholar
  10. 10.
    D’haeseleer, P. (2005). How does gene expression clustering work? Nat. Biotechnol. 23, 1499–1501.PubMedCrossRefGoogle Scholar
  11. 11.
    Gray, R. M., Kieffer, J. C. & Linde, Y. (1980). Locally optimal block quantizier design. Inf. Control 45, 178–198.CrossRefGoogle Scholar
  12. 12.
    Rose, K., Gurewitz, E. & Fox, G. (1990). A deterministic annealing approach to clustering. Patt. Rec. Lett. 11, 589–594.CrossRefGoogle Scholar
  13. 13.
    Wu, Z. & Leahy, R. (1993). An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. PAMI. 15, 1101–1113.Google Scholar
  14. 14.
    Shi, J. & Malik, J. (1997). Normalized cuts and image segmentation. Proc. CVPR. 731–737.Google Scholar
  15. 15.
    Dubnov, S., El-Yaniv, R., Gdalyahu, Y., Schneidman, E., Tishby, N. & Yona, G. (2002). A new non-parametric pairwise clustering algorithm based on iterative estimation of distance profiles. Mach. Learn., 47, 35–61.CrossRefGoogle Scholar
  16. 16.
    Rissanen, J. (1989). Stochastic Complexity in Statistical Inquiry. World Scientific, Singapore.Google Scholar
  17. 17.
    Bolshakova, N., Azuaje, F. & Cunningham, P. (2005). A knowledge-driven approach to cluster validity assessment. Bioinformatics. 21, 2546–2547.PubMedCrossRefGoogle Scholar
  18. 18.
    Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G. (2000). Gene ontology: tool for the unification of biology. Gene Ontol. Consortium. Nat Genet. 25, 25–29.Google Scholar
  19. 19.
    Speer, N., Spieth, C. & Zell, A. (2004). A memetic clustering algorithm for the functional partition of genes based on the gene ontology. In Proceedings of the 2004 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB 2004), San Diego, USA IEEE Press, 252–259.Google Scholar
  20. 20.
    Raychaudhuri, S., Schutze, H. & Altman, R.B. (2002). Using text analysis to identify functionally coherent gene groups. Genome Res. 12, 1582–1590.PubMedCrossRefGoogle Scholar
  21. 21.
    Gat-Viks, I., Sharan, R. & Shamir, R. (2003). Scoring clustering solutions by their biological relevance. Bioinformatics 19 2381–2389.PubMedCrossRefGoogle Scholar
  22. 22.
    Bolshakova, N. & Azuaje, F. (2003). Machaon CVE: cluster validation for gene expression data. Bioinformatics 19, 2494–2495.PubMedCrossRefGoogle Scholar
  23. 23.
    Bertoni, A. & Valentini, G. (2006). Randomized maps for assessing the reliability of patients clusters in DNA microarray data analyses. Artif. Intell. Med. 37 85–109.PubMedCrossRefGoogle Scholar
  24. 24.
    Olman, V., Xu, D. & Xu, Y. (2003).CUBIC: identification of regulatory binding sites through data clustering. J. Bioinform. Comput. Biol. 1, 21–40.PubMedCrossRefGoogle Scholar
  25. 25.
    McShane, L.M., Radmacher, M.D., Freidlin, B., Yu, R., Li, M.C. & Simon, R. (2002). Methods for assessing reproducibility of clustering patterns observed in analyses of microarray data. Bioinformatics. 18, 1462–1469.PubMedCrossRefGoogle Scholar
  26. 26.
    Yeung, K.Y., Haynor, D.R. & Ruzzo, W.L. (2001). Validating clustering for gene expression data. Bioinformatics. 17, 309–318.PubMedCrossRefGoogle Scholar
  27. 27.
    Smolkin, M. & Ghosh, D. (2003).Cluster stability scores for microarray data in cancer studies. BMC Bioinformatics. 4, 36.PubMedCrossRefGoogle Scholar
  28. 28.
    Dudoit, S. & Fridlyand, J. (2003).Bagging to improve the accuracy of a clustering procedure. Bioinformatics. 19 1090–1099.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang, K. & Zhao, H. (2000). Assessing reliability of gene clusters from gene expression data. Funct. Integr. Genomics. 1, 156–173.PubMedCrossRefGoogle Scholar
  30. 30.
    Schwarz, G. (1978). Estimating the dimension of a model. Ann. Stat. 6, 461–464.CrossRefGoogle Scholar
  31. 31.
    Bejerano, G. (2003). Efficient exact p-value computation and applications to biosequence analysis. In the proceedings of RECOMB 2003, 38–47, ACM press, New York.CrossRefGoogle Scholar
  32. 32.
    Yona, G., Dirks, W., Rahman, R. & Lin, M. (2006). Effective similarity measures for expression profiles. Bioinformatics. 22, 1616–1622.PubMedCrossRefGoogle Scholar
  33. 33.
    Dirks, W. & Yona, G. (2003). A comprehensive study of the notion of functional link between genes based on microarray data, promoter signals, protein-protein interactions and pathway analysis. Technical report TR2004-1921, Computing and Information Science, Cornell University.Google Scholar
  34. 34.
    Kanehisa, M. (1996). Toward pathway engineering: a new database of genetic and molecular pathways. Sci. Technol. Jpn. 59, 34–38.Google Scholar
  35. 35.
    Gygi, S.P., Rochon, Y., Franza, B.R. & Aebersold, R. (1999). Correlation between protein and mRNA abundance in yeast. Mol. Cell Biol. 19, 1720–1730.PubMedGoogle Scholar
  36. 36.
    Qian, J., Dolled-Filhart, M., Lin, J., Yu, H. & Gerstein, M. (2001). Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions. J. Mol. Biol. 312, 1053–1066.CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Golan Yona
    • 1
    • 2
  • William Dirks
    • 3
  • Shafquat Rahman
    • 4
  1. 1.Department of Biological Statistics and Computational BiologyCornell UniversityIthacaUSA
  2. 2.Department of Computer ScienceTechnion - Israel Institute of TechnologyHaifaIsrael
  3. 3.Center for Integrative GenomicsUniversity of California, BerkeleyBerkeleyUSA
  4. 4.Mathworks Inc.NatickUSA

Personalised recommendations