Skip to main content

A Maximum Likelihood Method for Reconstruction of the Evolution of Eukaryotic Gene Structure

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 541))

Abstract

Spliceosomal introns are one of the principal distinctive features of eukaryotes. Nevertheless, different large-scale studies disagree about even the most basic features of their evolution. In order to come up with a more reliable reconstruction of intron evolution, we developed a model that is far more comprehensive than previous ones. This model is rich in parameters, and estimating them accurately is infeasible by straightforward likelihood maximization. Thus, we have developed an expectation-maximization algorithm that allows for efficient maximization. Here, we outline the model and describe the expectation-maximization algorithm in detail. Since the method works with intron presence–absence maps, it is expected to be instrumental for the analysis of the evolution of other binary characters as well.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nixon JE, Wang A, Morrison HG, McArthur AG, Sogin ML, Loftus BJ, Samuelson J. A spliceosomal intron in Giardia lamblia. Proc Natl Acad Sci U S A 2002;99:3359–3361.

    Article  Google Scholar 

  2. Vanacova S, Yan W, Carlton JM, Johnson PJ. Spliceosomal introns in the deep-branching eukaryote Trichomonas vaginalis. Proc Natl Acad Sci U S A 2005;102:4430–4435.

    Article  PubMed  CAS  Google Scholar 

  3. Simpson AG, MacQuarrie EK, Roger AJ. Early origin of canonical introns. Nature 2002;419:270.

    Article  PubMed  CAS  Google Scholar 

  4. Collins L, Penny D. Complex spliceosomal organization ancestral to extant eukaryotes. Mol Biol Evol 2005;22:1053–1066.

    Article  PubMed  CAS  Google Scholar 

  5. Lynch M., Richardson AO. The evolution of spliceosomal introns. Curr Opin Genet Dev 2002;12:701–710.

    Article  PubMed  CAS  Google Scholar 

  6. Roy SW, Gilbert W. The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet 2006;7:211–221.

    PubMed  Google Scholar 

  7. Rogozin IB, Wolf YI, Sorokin AV, Mirkin BG, Koonin EV. Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr Biol 2003;13:1512–1517.

    Article  PubMed  CAS  Google Scholar 

  8. Roy SW, Gilbert W. Complex early genes. Proc Natl Acad Sci U S A 2005;102:1986–1991.

    Article  PubMed  CAS  Google Scholar 

  9. Roy SW, Gilbert W. Rates of intron loss and gain: implications for early eukaryotic evolution. Proc Natl Acad Sci U S A 2005;102:5773–5778.

    Article  PubMed  CAS  Google Scholar 

  10. Csuros M. Likely scenarios of intron evolution, Lecture Notes in Bioinformatics (McLysaght, A. and Huson, D., editors): Proc. RECOMB 2005 Comparative Genomics International Workshop (RCG 2005) 2005;3678:47–60.

    Google Scholar 

  11. Qiu WG, Schisler N, Stoltzfus A. The evolutionary gain of spliceosomal introns: sequence and phase preferences. Mol Biol Evol 2004;21:1252–1263.

    Article  PubMed  CAS  Google Scholar 

  12. Fedorov A, Roy SW, Fedorova L, Gilbert W. Mystery of intron gain. Genome Res 2003;13:2236–2241.

    Article  PubMed  CAS  Google Scholar 

  13. Cho S, Jin SW, Cohen A, Ellis RE. A phylogeny of caenorhabditis reveals frequent loss of introns during nematode evolution. Genome Res 2004;14:1207–1220.

    Article  PubMed  CAS  Google Scholar 

  14. Roy SW, Hartl DL. Very little intron loss/gain in Plasmodium: intron loss/gain mutation rates and intron number. Genome Res 2006;16:750–756.

    Article  PubMed  CAS  Google Scholar 

  15. Jeffares DC, Mourier T, Penny D. The biology of intron gain and loss. Trends Genet 2006;22:16–22.

    Article  PubMed  CAS  Google Scholar 

  16. Nguyen HD, Yoshihama M, Kenmochi N. New maximum likelihood estimators for eukaryotic intron evolution. PLoS Comput Biol 2005;1:e79.

    Article  PubMed  Google Scholar 

  17. Nei M, Chakraborty R, Fuerst PA. Infinite allele model with varying mutation rate. Proc Natl Acad Sci U S A 1976;73:4164–4168.

    Article  PubMed  CAS  Google Scholar 

  18. Uzzell T, Corbin KW. Fitting discrete probability distributions to evolutionary events. Science 1971;172:1089–1096.

    Article  PubMed  CAS  Google Scholar 

  19. Dibb NJ. Proto-splice site model of intron origin. J Theor Biol 1991;151:405–416.

    Article  PubMed  CAS  Google Scholar 

  20. Dibb NJ, Newman AJ. Evidence that introns arose at proto-splice sites. Embo J 1989;8:2015–2021.

    PubMed  CAS  Google Scholar 

  21. Sverdlov AV, Rogozin IB, Babenko VN, Koonin EV. Reconstruction of ancestral protosplice sites. Curr Biol 2004;14:1505–1508.

    Article  PubMed  CAS  Google Scholar 

  22. Jordan IM (ed.). Learning in Graphical Models. Kluwer Academic Publishers, Boston, MA, 1998.

    Google Scholar 

  23. Jin L, Nei M. Limitations of the evolutionary parsimony method of phylogenetic analysis. Mol Biol Evol 1990;7:82–102.

    PubMed  CAS  Google Scholar 

  24. Yang Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 1994;39:306–314.

    Article  PubMed  CAS  Google Scholar 

  25. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J R Statist Soc B 1977;39:1–38.

    Google Scholar 

  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376.

    Article  PubMed  CAS  Google Scholar 

  27. Friedman N, Ninio M, Pe’er I, Pupko T. A structural EM algorithm for phylogenetic inference. J Comput Biol 2002;9: 331–353.

    Article  PubMed  CAS  Google Scholar 

  28. Siepel A, Haussler D. Phylogenetic estimation of context-dependent substitution rates by maximum likelihood. Mol Biol Evol 2004;21:468–488.

    Article  PubMed  CAS  Google Scholar 

  29. Castillo E, Gutierrez JM, Hadi AS. Expert systems and probabilistic network models (Monographs in Computer Science). Springer, New York, 1996.

    Google Scholar 

  30. Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical recipes in C: The art of scientific computing. Cambridge University Press, New York, 2nd ed., 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Carmel, L., Rogozin, I.B., Wolf, Y.I., Koonin, E.V. (2009). A Maximum Likelihood Method for Reconstruction of the Evolution of Eukaryotic Gene Structure. In: Ireton, R., Montgomery, K., Bumgarner, R., Samudrala, R., McDermott, J. (eds) Computational Systems Biology. Methods in Molecular Biology, vol 541. Humana Press. https://doi.org/10.1007/978-1-59745-243-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-243-4_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-905-5

  • Online ISBN: 978-1-59745-243-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics