Skip to main content

Inferring Molecular Interactions Pathways from eQTL Data

  • Protocol
  • First Online:
Computational Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 541))

Abstract

Analysis of expression quantitative trait loci (eQTL) helps elucidate the connection between genotype, gene expression levels, and phenotype. However, standard statistical genetics can only attribute the changes in expression levels to loci on the genome, not specific genes. Each locus can contain many genes, making it very difficult to discover which gene is controlling the expression levels of other genes. Furthermore, it is even more difficult to find a pathway of molecular interactions responsible for controlling the expression levels. Here we describe a series of techniques for finding explanatory pathways by exploring the graphs of molecular interactions. We show several simple methods can find complete pathways that explain the mechanism of differential expression in eQTL data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brem RB, Storey JD, Whittle J, Kruglyak L. Genetic interactions between polymorphisms that affect gene expression in yeast. Nature 2005, 436:701–03.

    Article  PubMed  CAS  Google Scholar 

  2. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB, Friend SH. Genetics of gene expression surveyed in maize, mouse and man. Nature 2003, 422:297–302.

    Article  PubMed  CAS  Google Scholar 

  3. Tu Z, Wang L, Arbeitman MN, Chen T, Sun F. An integrative approach for causal gene identification and gene regulatory pathway inference. Bioinformatics 2006, 22:e489–96.

    Article  PubMed  CAS  Google Scholar 

  4. Doerge RW, Zeng ZB, Weir BS. Statistical issues in the search for genes affecting quantitative traits in experimental populations. Stat Sci 1997, 123:195–219.

    Google Scholar 

  5. Storey JM, Akey JM, Kruglyak L. Multiple locus linkage analysis of genomewide expression in yeast. Plos Biol 2005, 3:e267.

    Article  PubMed  Google Scholar 

  6. Chen L, Storey JD. Relaxed significance criteria for linkage analysis. Genetics 2006, 173:2371–81.

    Article  PubMed  CAS  Google Scholar 

  7. Lee S, Pe’er D, Dudley AM, Church GM, Koller D. Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification. PNAS 2006, 103:14062–67.

    Article  PubMed  CAS  Google Scholar 

  8. Gldener U, Mnsterktter M, Kastenmller G, Strack N, van Helden J, Lemer C, Richelles J, Wodak SJ, Garca-Martnez J, Prez-Ortn JE, Michael H, Kaps A, Talla E, Dujon B, Andr V, Souciet JL, De Montigny J, Bon E, Gaillardin C, Mewes HW. Cygd: The comprehensive yeast genome database. Nucl Acids Res 2005, 33(Database Issue):D364–68.

    Article  Google Scholar 

  9. Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne J, Reynolds DB, Yoo J, Jennings EG, Zeitlinger J, Pokholok M, Kellis DK, Rolfe PA, Takusagawa KT, Lander ES, Gifford DK, Fraenkel E, Young RA. Transcriptional regulatory code of a eukaryotic genome. Nature 2004, 431:99–104.

    Article  PubMed  CAS  Google Scholar 

  10. Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R, McCartney RR, Schmidt MC, Rachidi N, Lee S, Mah S, Meng L, Stark MJR, Stern DF, De Virgilio C, Tyers M, Andrews B, Gerstein M, Schweitzer B, Predki PF, Snyder M. Global analysis of protein phosphorylation in yeast. Nature 2005, 438:679–84.

    Article  PubMed  CAS  Google Scholar 

  11. McDermott J, Bumgarner RE, Samudrala R. Functional annotation from predicted protein interaction networks. Bioinformatics 2005, 21:3217–26.

    Article  PubMed  CAS  Google Scholar 

  12. Chandra AK, Raghavan P, Ruzzo WL, Smolensky R. The electrical resistance of a graph captures its commute and cover times. In Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, 1989, pp. 574–86.

    Google Scholar 

  13. Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD, Bennett HA, Coffey E, Dai H, He YD, Kidd MJ, King AM, Meyer MR, Slade D, Lum PY, Stepaniants SB, Shoemaker DD, Gachotte D, Chakraburtty K, Simon J, Bard M, and Friend SF. Functional discovery via a compendium of expression profiles. Cell 2005, 102:109–26.

    Article  Google Scholar 

  14. Fields S, Herskowitz I. The yeast ste12 product is required for expression of two sets of cell-type-specific genes. Cell 1985, 42:923–30.

    Article  PubMed  CAS  Google Scholar 

  15. Song O, Dolan J, Yuan Y, Fields S. Pheromone-dependent phosphorylation of the yeast ste12 protein correlates with transcriptional activation. Genes Dev 1991, 5:741–50.

    Article  PubMed  CAS  Google Scholar 

  16. Chen Q, Konopka BJ. Regulation of the g-protein-coupled alpha-factor pheromone receptor by phosphorylation. Mol Cell Biol 1996, 161:247–57.

    Google Scholar 

  17. Hartig A, Holly J, Saari G, MacKay VL. Multiple regulation of ste2, a mating type-specific gene of saccharomyces cerevisiae. Mol Cell Biol 1986, 6:2106–14.

    PubMed  CAS  Google Scholar 

  18. Cope MJ, Yang S, Shang C, Drubin DG. Novel protein kinases ark1p and prk1p associate with and regulate the cortical actin cytoskeleton in budding yeast. J Cell Biol 1999, 144:1203–18.

    Article  PubMed  CAS  Google Scholar 

  19. Meier UT. Comparison of the rat nucleolar protein nopp140 with its yeast homolog srp40. Differential phosphorylation in vertebrates and yeast. J Biol Chem 1996, 271:19376–84.

    PubMed  CAS  Google Scholar 

  20. Lu J, Kobayashi E, Brill SJ. Characterization of a high mobility group ½ homolog in yeast. J Biol Chem 1996, 271:33678–85.

    Article  PubMed  CAS  Google Scholar 

  21. Gadal O, Labarre S, Boschiero C, Thuriaux P. Hmo1, an hmg-box protein, belongs to the yeast ribosomal DNA transcription system. EMBO J 2002, 21:5498–507.

    Article  PubMed  CAS  Google Scholar 

  22. Lee SI, Pe’er D, Dudley A, Church G, Koller D. Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification. Proc Natl Acad Sci USA 2006, 103:14062–67.

    Google Scholar 

Download references

Acknowledgments

This work was supported by NSF Graduate Research Fellowship DGE0203031.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rashid, I., McDermott, J., Samudrala, R. (2009). Inferring Molecular Interactions Pathways from eQTL Data. In: Ireton, R., Montgomery, K., Bumgarner, R., Samudrala, R., McDermott, J. (eds) Computational Systems Biology. Methods in Molecular Biology, vol 541. Humana Press. https://doi.org/10.1007/978-1-59745-243-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-243-4_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-905-5

  • Online ISBN: 978-1-59745-243-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics