Skip to main content

Analysis of Ethanol Developmental Toxicity in Zebrafish

  • Protocol
Alcohol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 447))

Summary

It is largely accepted that vertebrates are more susceptible to chemical insult during the early life stage. It is implied that if a chemical such as ethanol is developmentally toxic, it must interfere with, or modulate, critical signaling pathways. The probable molecular explanation for increased embryonic susceptibility is that collectively there is no other period of an animal's lifespan when the full repertoire of molecular signaling is active. Understanding the mechanism by which ethanol exposure disrupts vertebrate embryonic development is enormously challenging; it requires a thorough understanding of the normal molecular program to understand how transient ethanol exposure disrupts signaling and results in detrimental long-lasting effects. During the past several years, investigators have recognized the advantages of the zebrafish model to discover the signaling events that choreograph embryonic development. External development coupled with the numerous molecular and genetic methods make this model a valuable tool to unravel the mechanisms by which ethanol disrupts embryonic development. In this chapter we describe procedures used to evaluate and define the morphological, cellular and molecular responses to ethanol in zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Becker, H. C., Diaz-Granados, J. L., and Randall, C. L. (1996) Teratogenic actions of ethanol in the mouse: a minireview. Pharmacol. Biochem. Behav. 55, 501–513.

    Article  PubMed  CAS  Google Scholar 

  2. 2. Brien, J. F., Clarke, D. W., Richardson, B., and Patrick, J. (1985) Disposition of ethanol in maternal blood, fetal blood, and amniotic fluid of third-trimester pregnant ewes. Am. J. Obstet. Gynecol. 152, 583–590.

    PubMed  CAS  Google Scholar 

  3. 3. Richardson, B. S., Patrick, J. E., Bousquet, J., Homan, J., and Brien, J. F. (1985) Cerebral metabolism in fetal lamb after maternal infusion of ethanol. Am. J. Physiol. 249, R505–R509.

    PubMed  CAS  Google Scholar 

  4. 4. Bupp Becker, S. R., and Shibley, I. A., Jr. (1998) Teratogenicicty of ethanol in different chicken strains. Alcohol 33, 457–464.

    CAS  Google Scholar 

  5. 5. Su, B., Debelak, K. A., Tessmer, L. L., Cartwright, M. M., and Smith, S. M. (2001) Genetic influences on craniofacial outcome in an avian model of prenatal alcohol exposure. Alcohol Clin. Exp. Res. 25, 60–69.

    Article  PubMed  CAS  Google Scholar 

  6. 6. Ranganathan, S., Davis, D. G., and Hood, R. D. (1987) Developmental toxicity of ethanol in Drosophila melanogaster. Teratology 36, 45–49.

    Article  PubMed  CAS  Google Scholar 

  7. 7. Ranganathan, S., Davis, D. G., Leeper, J. D., and Hood, R. D. (1987) Effects of differential alcohol dehydrogenase activity on the developmental toxicity of ethanol in Drosophila melanogaster. Teratology 36, 329–334.

    Article  PubMed  CAS  Google Scholar 

  8. 8. Dhawan, R., Dusenbery, D. B., and Williams, P. L. (1999) Comparison of lethality, reproduction, and behavior as toxicological endpoints in the nematode Caenorhabditis elegans. J. Toxicol. Environ. Health A 58, 451–462.

    Article  PubMed  CAS  Google Scholar 

  9. 9. Thompson, G. and de Pomerai, D. I. (2005) Toxicity of short-chain alcohols to the nematode Caenorhabditis elegans: A comparison of endpoints. J. Biochem. Mol. Toxicol. 19, 87–95.

    Article  PubMed  CAS  Google Scholar 

  10. 10. Laale, H. W. (1971) Ethanol induced notochord and spinal cord duplications in the embryo of the zebrafish, Brachydanio rerio. J. Exp. Zool. 177, 51–64.

    Article  PubMed  CAS  Google Scholar 

  11. 11. Reimers, M. J., Flockton, A. R., and Tanguay, R. L. (2004) Ethanol and acetaldehyde-mediated developmental toxicity in zebrafish. Neurotoxicol. Teratol. 26, 769–781.

    Article  PubMed  CAS  Google Scholar 

  12. 12. Ackermann, G. E., and Paw, B. H. (2003) Zebrafish: a genetic model for vertebrate organogenesis and human disorders. Front. Biosci. 8, d1227–d1253.

    Article  PubMed  CAS  Google Scholar 

  13. 13. Rubinstein, A. L. (2003) Zebrafish: from disease modeling to drug discovery. Curr. Opin. Drug Discov. Devel. 6, 218–23.

    PubMed  CAS  Google Scholar 

  14. 14. Rodriguez, F., Lopez, J. C., Vargas, J. P., Broglio, C., Gomez, Y., and Salas, C. (2002) Spatial memory and hippocampal pallium through vertebrate evolution: Insights from reptiles and teleost fish. Brain Res. Bull. 57, 499–503.

    Article  PubMed  CAS  Google Scholar 

  15. 15. Amsterdam, A., S. Lin, L.G. Moss, and N. Hopkins (1996) Requirements for green fluorescent protein detection in transgenic zebrafish embryos. Gene 173, 99–103.

    Article  PubMed  CAS  Google Scholar 

  16. 16. Higashijima, S., Okamoto, H., Ueno, N., Hotta, Y., and Eguchi, G. (1997) High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin. Dev. Biol. 192, 289–299.

    Article  PubMed  CAS  Google Scholar 

  17. 17. Wixon, J. (2000) Featured organism: Danio rerio, the zebrafish. Yeast 17, 225–31.

    Article  PubMed  CAS  Google Scholar 

  18. 18. Dodd, A., Curtis, P. M., Williams, L. C., and Love, D. R. (2000) Zebrafish: Bridging the gap between development and disease. Hum. Mol. Genet. 9, 2443–2449.

    Article  PubMed  CAS  Google Scholar 

  19. 19. Haffter, P., Granato, M., Brand, M., Mullins, M. C., Hammerschmidt, M., Kane, D. A., Odenthal, J., van Eeden, F. J., Jiang, Y. P., Heisenberg, C. P., et al. (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36.

    CAS  Google Scholar 

  20. 20. Mullins, M. C., Hammerschmidt, M., Haffter, P., and Nusslein-Volhard, C. (1994) Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr. Biol. 4, 189–202.

    Article  PubMed  CAS  Google Scholar 

  21. 21. Amsterdam, A. and Hopkins, N. (2006) Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. Trends Genet. 22, 473–478.

    Article  PubMed  CAS  Google Scholar 

  22. 22. Peterson, R. T., Link, B. A., Dowling, J. E., and Schreiber, S. L. (2000) Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc. Natl. Acad. Sci. USA 97,12965–12969.

    Article  Google Scholar 

  23. 23. Peterson, R. T., Shaw, S. Y., Peterson, T. A., Milan, D. J. Zhong, T. P., Schreiber, S. L., MacRae, C. A., and Fishman, M. C. (2004) Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat. Biotechnol. 22, 595–599.

    Article  PubMed  CAS  Google Scholar 

  24. 24. Shafizadeh, E., Peterson, R. T., and Lin, S. (2004) Induction of reversible hemolytic anemia in living zebrafish using a novel small molecule. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 138, 245–249.

    Article  PubMed  Google Scholar 

  25. 25. Mathew, L. K., Andreasen, E. A., Sengupta, S., Peterson, R. T., and Tanguay, R. L. (nd) Chemical genetics to probe regenerative biology. J. Biol. Chem. 282, 35202–35210.

    Article  Google Scholar 

  26. 26. Nasevicius, A., and Ekker, S. C. (2001) The zebrafish as a novel system for functional genomics and therapeutic development applications. Curr. Opin. Mol. Ther. 3, 224–228.

    PubMed  CAS  Google Scholar 

  27. 27. Nasevicius, A., and Ekker, S. C. (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat. Genet. 26, 216–220.

    Article  PubMed  CAS  Google Scholar 

  28. 28. Baumann, M., and Sander, K. (1984) Bipartite axiation follows incomplete epiboly in zebrafish embryos treated with chemical teratogens. J. Exp. Zool. 230, 363–376.

    Article  PubMed  CAS  Google Scholar 

  29. 29. Carvan, M. J., 3rd, Loucks, E., Weber, D. N., and Williams, F. E. (2004) Ethanol effects on the developing zebrafish: Neurobehavior and skeletal morphogenesis. Neurotoxicol. Teratol. 26, 757–768.

    Article  PubMed  CAS  Google Scholar 

  30. 30. Laale, H. W. (1977) The biology and use of zebrafish, Brachydanio rerio, in fisheries research. A literature review. J. Fish Biol. 10, 121–173.

    Article  Google Scholar 

  31. 31. Loucks, E. and Carvan, M. J., 3rd. (2004) Strain-dependent effects of developmental ethanol exposure in zebrafish. Neurotoxicol. Teratol. 26, 745–755.

    Article  PubMed  CAS  Google Scholar 

  32. 32. Reimers, M. J., La Du, J. K., Periera, C. B., Giovanini, J., and Tanguay, R. L. (2006) Ethanol-dependent toxicity in zebrafish is partially attenuated by antioxidants. Neurotoxicol. Teratol. 28, 497–508.

    Article  PubMed  CAS  Google Scholar 

  33. 33. Reimers, M. J., Hahn, M. E., and Tanguay, R. L. (2004) Two zebrafish alcohol dehydrogenases share common ancestry with mammalian class I, II, IV, and V alcohol dehydrogenase genes but have distinct functional characteristics. J. Biol. Chem. 279, 38303–38312.

    Article  PubMed  CAS  Google Scholar 

  34. 34. Lassen, N., Estey, T., Tanguay, R. L., Pappa, A., Reimers, M. J., and Vasiliou, V. (2005) Molecular cloning, baculovirus expression, and tissue distribution of the zebrafish aldehyde dehydrogenase 2. Drug Metab. Dispos. 33, 649–656.

    Article  PubMed  CAS  Google Scholar 

  35. 35. Jowett, T., and Lettice, L. (1994) Whole-mount in situ hybridizations on zebrafish embryos using a mixture of digoxigenin- and fluorescein-labelled probes. Trends Genet. 10, 73–74.

    Article  PubMed  CAS  Google Scholar 

  36. 36. Linney, E., and Udvadia, A. J. (2004) Construction and detection of fluorescent, germline transgenic zebrafish. Methods Mol. Biol. 254, 271–288.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tanguay, R.L., Reimers, M.J. (2008). Analysis of Ethanol Developmental Toxicity in Zebrafish. In: Nagy, L.E. (eds) Alcohol. Methods in Molecular Biology™, vol 447. Humana Press. https://doi.org/10.1007/978-1-59745-242-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-242-7_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-906-2

  • Online ISBN: 978-1-59745-242-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics