Skip to main content

Generation and Use of Primary Rat Cultures for Studies of the Effects of Ethanol

  • Protocol
Alcohol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 447))

  • 2965 Accesses

Abstract

In vivo studies are ideal for identifying the phenomenology of ethanol toxicity and teratology. They are limited in being able to explore cellular and molecular mechanisms of action. Two types of culture models have proven to be very instructive: monolayer primary cultures of dissociated cells and organotypic slice cultures. Dissociated cell preparations have the advantage of being enriched populations of cells, whereas the organotypic cultures have the advantage of providing normal cell associations. Details for the methods used to generate these preparations are described. As ethanol is a volatile liquid, the success of a culture model depends upon stabilizing the ethanol content in the culture medium. A method to maintain the ethanol concentration is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1.Gill, T. H., Young, O. M., and Tower, D. B. (1974) The uptake of 36C1 into astrocytes in tissue culture by a potassium-dependent, saturable process. J. Neurochem. 23, 1011–1018.

    Article  PubMed  CAS  Google Scholar 

  2. 2. Kennedy, L. A., and Mukerji, S. (1986) Ethanol neurotoxicity. 1. Direct effects on replicating astrocytes. Neurobehav. Toxicol. Teratol. 8, 11–15.

    PubMed  CAS  Google Scholar 

  3. 3. Luo, J., and Miller, M. W. (1999) Platelet-derived growth factor-mediated signal transduction underlying astrocyte proliferation: site of ethanol action. J. Neurosci. 19, 10014–10025.

    PubMed  CAS  Google Scholar 

  4. 4. Guerri, C., Rupert, G., and Pasqual, M. (2006) Glial targets of developmental exposure to ethanol, in Brain Development. Normal Processes and the Effects of Alcohol and Nicotine. (Miller, M. W., ed.). Oxford University Press, New York, pp. 295–312.

    Google Scholar 

  5. 5. Seil, F. J., and Herndon, R. M. (1970) Cerebellar granule cells in vitro. A light and electron microscope study. J. Cell Biol. 45, 212–220.

    Article  PubMed  CAS  Google Scholar 

  6. 6. Levi, G., Aloisi, F., Ciotti, M., Thangnipon, W., Kingsbury, A., and Balazs, R., (1989). Preparation of 98% pure granule cell cultures, in Dissection and Tissue Culture Manual of the Nervous System (Shahar, A., deVellis, J., Vernadakis, A., Haber, B., eds.), Alan R. Liss, New York, pp. 211–214.

    Google Scholar 

  7. 7. Pantazis, N. J., Dohrman, D. P., Goodlett, C. R., Cook, R. T., and West, J. R. (1993) Vulnerability of cerebellar granule cells to alcohol-induced cell death diminishes with time in culture. Alcohol. Clin. Exp. Res. 17, 1014–1021.

    Article  PubMed  CAS  Google Scholar 

  8. 8. Raine, C. S., and Bornstein, M. B. (1974) Unusual profiles in organotypic cultures of central nervous tissue. J. Neurocytol. 3, 313–325.

    Article  PubMed  CAS  Google Scholar 

  9. 9. Gahwiler, B. H. (1981) Organotypic monolayer cultures of nervous tissue. J. Neurosci. Meth. 4, 329–342.

    Article  CAS  Google Scholar 

  10. 10. Bolz, J., Novak, N., Gotz, M., and Bonhoeffer, T. (1990) Formation of target-specific neuronal projections in organotypic slice cultures from rat visual cortex. Nature 346, 359–362.

    Article  PubMed  CAS  Google Scholar 

  11. 11. Siegenthaler, J. A., and Miller, M. W. (2004) Transforming growth factor ?1 regulates cell migration in rat cortex: effects of ethanol. Cereb. Cortex 14, 602–613.

    Article  Google Scholar 

  12. 12. Popolo, M., and McCarthy, D. M. (2004) Influence of dopamine on precursor cell proliferation and differentiation in the embryonic mouse telencephalon. Dev. Neurosci. 26, 229–244.

    Article  PubMed  CAS  Google Scholar 

  13. 13. Miller, M. W. (2006) Effect of prenatal exposure to ethanol on glutamate and GABA immunoreactivity in macaque somatosensory and motor cortices: critical timing of exposure. Neuroscience 138, 97–107.

    Article  PubMed  CAS  Google Scholar 

  14. 14. Haydar, T. F., Wang, F., Schwartz, M. L., and Rakic, P. (2000) Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J. Neurosci. 20, 5764–5774.

    PubMed  CAS  Google Scholar 

  15. 15. Siegenthaler, J. A., and Miller, M. W. (2005) Transforming growth factor β1 promotes cell cycle exit through the cyclin-dependent kinase inhibitor p21 in the developing cerebral cortex. J. Neurosci. 21, 8627–8636.

    Article  Google Scholar 

  16. 16. Siegenthaler, J. A., and Miller, M. W. (2005) Ethanol disrupts cell cycle regulation in developing rat cortex: interaction with transforming growth factor β1. J. Neurochem. 95, 902–912.

    Article  PubMed  CAS  Google Scholar 

  17. 17. Gal, J. S., Morozov, Y. M., Ayoub, A. E., Chatterjee, M., Rakic, P., and Haydar, T. F. (2006) Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones. J. Neurosci. 26, 1045–1056.

    Article  PubMed  CAS  Google Scholar 

  18. 18. Miller, M. W., and Nowakowski, R. S. (1991) Effect of prenatal exposure to ethanol on the cell cycle kinetics and growth fraction in the proliferative zones of fetal rat cerebral cortex. Alcohol Clin. Exp. Res. 14, 229–232.

    Article  Google Scholar 

  19. 19. Miller, N. W. (1993) Migration of cortical neurons is altered by gestational exposure to ethanol. Alcohol Clin. Exp. Res. 17, 304–314.

    Article  PubMed  CAS  Google Scholar 

  20. 20. Haydar, T. F., Bambrick, L. L., Krueger, B. K., and Rakic, P. (1999) Organotypic slice cultures for analysis of proliferation, cell death, and migration in the embryonic neocortex. Brain Res. Brain Res. Protoc. 4, 425–437.

    Article  PubMed  CAS  Google Scholar 

  21. 21. Agmon, A., and Connors, B. W. (1991) Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience. 41, 365–379.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The investigators thank a number of others who have worked with us over the years and have helped perfect the culturing methods described in this chapter, including Steve Alcott, Julie Jacobs, Jia Luo, Sandra Mooney, and Julie Siegenthaler. Our work has been funded by the National Institute of Alcohol Abuse and Alcoholism and the Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lindke, A., Tremper-Wells, B., Miller, M.W. (2008). Generation and Use of Primary Rat Cultures for Studies of the Effects of Ethanol. In: Nagy, L.E. (eds) Alcohol. Methods in Molecular Biology™, vol 447. Humana Press. https://doi.org/10.1007/978-1-59745-242-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-242-7_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-906-2

  • Online ISBN: 978-1-59745-242-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics