Skip to main content

Assessing Tumor Angiogenesis in Histological Samples

  • Protocol
  • First Online:
Angiogenesis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 467))

Abstract

Tumour neovascularization acquires vessels through a number of processes, including angiogenesis, vasculogenesis, vascular remodelling, intussusception, and possibly vascular mimicry in certain tumours. The end result of the tumour vasculature has been quantified by counting the number of immunohistochemically identified microvessels in areas of maximal vascularity so-called hot spots. Other techniques have been developed, such as Chalkley counting and the use of image analysis systems that are robust and reproducible as well as more objective. Many of the molecular pathways that govern tumour neovascularization have been identified, and many reagents are now available to study these tissue sections. These include angiogenic growth factors and their receptors, cell adhesion molecules, proteases, and markers of activated, proliferating, cytokine-stimulated, or angiogenic vessels, such as CD105. It is also possible to differentiate quiescent from active vessels. Other reagents that can identify proteins involved in microenvironmental influences such as hypoxia have also been generated. Although the histological assessment of tumour vascularity is used mostly in the research context, it may also have clinical applications if appropriate methodology and trained observers perform the studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Folkman, J. (1971) Tumour angiogenesis: Therapeutic implications. N Engl J Med 285, 82–86.

    Google Scholar 

  2. Brem, S., Cotran, R., Folkman, J. (1972) Tumor angiogenesis: a quantitative method for histological grading. J Natl Cancer Inst 48, 347–356.

    PubMed  CAS  Google Scholar 

  3. Mlynek, M., van Beunigen, D., Leder, L.-D., Streffer, C. (1985) Measurement of the grade of vascularisation in histological tumour tissue sections. Br J Cancer 52, 945–948.

    PubMed  CAS  Google Scholar 

  4. Svrivastava, A., Laidler, P., Davies, R., Horgan, K., Hughes, L. (1988) The prognostic significance of tumor vascularity in intermediate-thickness (0.76–4.0 mm thick) skin melanoma. Am J Pathol 133, 419–423.

    Google Scholar 

  5. Porschen, R., Classen, S., Piontek, M., Borchard, F. (1994) Vascularization of carcinomas of the esophagus and its correlation with tumor proliferation. Cancer Res 54, 587–591.

    PubMed  CAS  Google Scholar 

  6. Weidner, N., Semple, J. P., Welch, W. R., Folkman, J. (1991) Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med 324, 1–8.

    PubMed  CAS  Google Scholar 

  7. Fox, S. B. (1997) Tumour angiogenesis and prognosis. Histopathology 30, 294–301,

    PubMed  CAS  Google Scholar 

  8. Fox, S., Harris, A. (2004) The biology of breast tumor angiogenesis, in (Harris, J., Lippman, M. E., Morrow, M., Osborne, C. K., eds.), Diseases of the Breast, 3rd ed., pp. 441–458. Lippincott, Williams & Wilkins, Philadelphia.

    Google Scholar 

  9. Folkman, J. (1990) What is the evidence that tumours are angiogenesis dependent. J Natl Cancer Inst 82, 4–6.

    PubMed  CAS  Google Scholar 

  10. Pezzella, F., Pastorin, O. U., Tagliabue, E., et al. (1996) Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. Am J Pathol 151(5), 1417–1423.

    Google Scholar 

  11. Pezzella, F. (2000) Evidence for novel non-angiogenic pathway in breast-cancer metastasis. Breast Cancer Progression Working Party. Lancet 355, 1787–1788.

    Google Scholar 

  12. Holash, J., Maisonpierre, P. C., Compton, D., (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284, 1994–1998.

    PubMed  CAS  Google Scholar 

  13. Holash, J., Wiegand, S. J., Yancopoulos, G. D. (1999) New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18, 5356–5362.

    PubMed  CAS  Google Scholar 

  14. Vermeulen, P. B., Colpaert, C., Salgado, R., (2001) Liver metastases from colorectal adenocarcinomas grow in three patterns with different angiogenesis and desmoplasia. J Pathol 195, 336–342.

    PubMed  CAS  Google Scholar 

  15. Shirakawa, K., Wakasugi, H., Heike, Y., (2002) Vasculogenic mimicry and pseudo-comedo formation in breast cancer. Int J Cancer 99, 821–828.

    PubMed  CAS  Google Scholar 

  16. Asahara, T., Masuda, H., Takahashi, T., (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85, 221–228.

    PubMed  CAS  Google Scholar 

  17. Gunsilius, E., Duba, H. C., Petzer, A. L., (2000) Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet 355, 1688–1691.

    PubMed  CAS  Google Scholar 

  18. Rafii, S. Circulating endothelial precursors: mystery, reality, and promise [comment]. J Clin Invest 105, 17–19, 2000.

    PubMed  CAS  Google Scholar 

  19. Asahara, T., Takahashi, T., Masuda, H., (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J, 18, 3964–3972.

    PubMed  CAS  Google Scholar 

  20. Lyden, D., Hattori, K., Dias, S., (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7, 1194–1201.

    PubMed  CAS  Google Scholar 

  21. Patan, S., Munn, L. L., Jain, R. K. (1996) Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: a novel mechanism of tumor angiogenesis. Microvasc Res 51, 260–272.

    PubMed  CAS  Google Scholar 

  22. Patan, S. (2000) Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol 50, 1–15.

    PubMed  CAS  Google Scholar 

  23. Fox, S., Gatter, K., Bicknell, R., (1993) Relationship of endothelial cell proliferation to tumor vascularity in human breast cancer. Cancer Res 53, 9161–9163.

    Google Scholar 

  24. Kakolyris, S., Giatromanolaki, A., Koukourakis, M., (1999) Assessment of vascular maturation in non-small cell lung cancer using a novel basement membrane component, LH39: correlation with p53 and angiogenic factor expression [in process citation]. Cancer Res 59, 5602–5607.

    PubMed  CAS  Google Scholar 

  25. Kakolyris, S., Fox, S. B., Koukourakis, M., (2000) Relationship of vascular maturation in breast cancer blood vessels to vascular density and metastasis, assessed by expression of a novel basement membrane component, LH39. Br J Cancer 82, 844–851.

    PubMed  CAS  Google Scholar 

  26. Sood, A. K., Seftor, E. A., Fletcher, M. S., (2001) Molecular determinants of ovarian cancer plasticity. Am J Pathol 158, 1279–1288.

    PubMed  CAS  Google Scholar 

  27. Folberg, R., Hendrix, M. J., Maniotis, A. J. (2000) Vasculogenic mimicry and tumor angiogenesis. Am J Pathol 156, 361–381.

    PubMed  CAS  Google Scholar 

  28. McDonald, D. M., Munn, L., Jain, R. K. (2000) Vasculogenic mimicry: how convincing, how novel, how significant? Am J Pathol 156, 383–388.

    PubMed  CAS  Google Scholar 

  29. Warren, B. (1979) The vascular morphology of tumors, in (Peterson, H., ed.), Tumor Blood Circulation, pp. 1–47. CRC Press, Boca Raton, FL.

    Google Scholar 

  30. Chang, Y. S., di Tomaso, E., McDonald, D. M., Jones, R., Jain, R. K., Munn, L. L. (2000) Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci U S A 97, 14608–14613.

    PubMed  CAS  Google Scholar 

  31. Barbareschi, M., Weidner, N., Gasparini, G., (1995) Microvessel quantitation in breast carcinomas. Appl Immunochem 3, 75–84.

    Google Scholar 

  32. Vermeulen, P. B., Gasparini, G., Fox, S. B., (2002) Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours. Eur J Cancer 38, 1564–1579.

    PubMed  CAS  Google Scholar 

  33. Chalkley, H. (1943) Method for the quantative morphological analysis of tissues. J Natl Cancer Inst 4, 47–53.

    Google Scholar 

  34. Weidner, N., Folkman, J., Pozza, F., (1992) Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 84, 1875–1887.

    PubMed  CAS  Google Scholar 

  35. Fox, S. B., Leek, R. D., Bliss, J., (1997) Association of tumor angiogenesis with bone marrow micrometastases in breast cancer patients. J Natl Cancer Inst 89, 1044–1049.

    PubMed  CAS  Google Scholar 

  36. Burrows, F. J., Thorpe, P. E. (1994) Vascular targeting—a new approach to the therapy of solid tumors. Pharmacol Ther 64, 155–174.

    PubMed  CAS  Google Scholar 

  37. Fox, S., Harris, A. (1997) Markers of tumor angiogenesis: clinical applications in prognosis and anti-angiogenic therapy. Invest New Drugs 15, 15–28.

    PubMed  CAS  Google Scholar 

  38. Kumar, S., Ghellal, A., Li, C., (1999) Breast carcinoma: vascular density determined using CD105 antibody correlates with tumor prognosis. Cancer Res 59, 856–861.

    PubMed  CAS  Google Scholar 

  39. Smolle, J., Soyer, H. P., Hofmann-Wellenhof, R., Smolle-Juettner, F. M., Kerl, H. (1989) Vascular architecture of melanocytic skin tumors. Pathol Res Pract 185, 740–745.

    PubMed  CAS  Google Scholar 

  40. Cockerell, C. J., Sonnier, G., Kelly, L., Patel, S. (1994) Comparative analysis of neovascularisation in primary cutaneous melanoma and Spitz nevus. Am J Dermatopathol 16, 9–13.

    PubMed  CAS  Google Scholar 

  41. Folberg, R., Rummelt, V., Ginderdeuren, R.-V., et al. (1993) The prognostic value of tumor blood vessel morphology in primary uveal melanoma. Ophthalmology 100, 1389–1398.

    PubMed  CAS  Google Scholar 

  42. Pezzella, F., Dibacco, A., Andreola, S., Nicholson, A. G., Pastorino, U., Harris, A. L. (1996) Angiogenesis in primary lung-cancer and lung secondaries. Eur J Cancer, 32A, 2494–2500.

    PubMed  CAS  Google Scholar 

  43. Wakui, S. (1992) Epidermal growth factor receptor at endothelial cell and pericyte interdigitation in human granulation tissue. Microvasc Res 44, 255–262.

    PubMed  CAS  Google Scholar 

  44. Visscher, D., Smilanetz, S., Drozdowicz, S., Wykes, S. (1993) Prognostic significance of image morphometric microvessel enumeration in breast carcinoma. Anal Quant Cytol 15, 88–92.

    CAS  Google Scholar 

  45. Fox, S. B., Leek, R. D., Weekes, M. P., Whitehouse, R. M., Gatter, K. C., Harris, A. L. (1995) Quantitation and prognostic value of breast cancer angiogenesis: comparison of microvessel density, Chalkley count, and computer image analysis. J Pathol 177, 275–283.

    PubMed  CAS  Google Scholar 

  46. Simpson, J., Ahn, C., Battifora, H., Esteban, J. (1994) Vascular surface area as a prognostic indicator in invasive breast carcinoma. Lab Invest 70, 22A.

    Google Scholar 

  47. Brawer, M. K., Deering, R. E., Brown, M., Preston, S. D., Bigler, S. A. (1994) Predictors of pathologic stage in prostatic carcinoma. The role of neovascularity. Cancer 73, 678–687.

    PubMed  CAS  Google Scholar 

  48. Furusato, M., Wakui, S., Sasaki, H., Ito, K., Ushigome, S. (1994) Tumour angiogenesis in latent prostatic carcinoma. Br J Cancer 70, 1244–1246.

    PubMed  CAS  Google Scholar 

  49. Bigler, S., Deering, R., Brawer, M. Comparisons of microscopic vascularity in benign and malignant prostate tissue. Human Pathol 24, 220–226.

    Google Scholar 

  50. Williams, J. K., Carlson, G. W., Cohen, C., Derose, P. B., Hunter, S., Jurkiewicz, M. J. (1994) Tumor angiogenesis as a prognostic factor in oral cavity tumors. Am J Surg 168, 373–380,

    PubMed  CAS  Google Scholar 

  51. Wesseling, P., van der Laak, J. A., Link, M., Teepen, H. L., Ruiter, D. J. (1998) Quantitative analysis of microvascular changes in diffuse astrocytic neoplasms with increasing grade of malignancy. Hum Pathol 29, 352–358.

    PubMed  CAS  Google Scholar 

  52. Charpin, C., Devictor, B., Bergeret, D., (1995) CD31 quantitative immunocytochemical assays in breast carcinomas. Correlation with current prognostic factors. Am J Clin Pathol 103, 443–448.

    PubMed  CAS  Google Scholar 

  53. Van der Laak, J., Westphal, J., Schalkwijk, L., (1998) An improved procedure to quantify tumour vascularity using true colour image analysis: comparison with the manual hot-spot procedure in a human melanoma xenograft model. J Pathol 184, 136–143.

    PubMed  CAS  Google Scholar 

  54. McCarthy, S. A., Kuzu, I., Gatter, K. C., Bicknell, R. (1991) Heterogeneity of the endothelial cell and its role in organ preference of tumour metastasis. Trends Pharmacol Sci 12, 462–467.

    PubMed  CAS  Google Scholar 

  55. Carnochan, P., Briggs, J. C., Westbury, G., Davies, A. J. (1991) The vascularity of cutaneous melanoma: a quantitative histological study of lesions 0.85–1.25 mm in thickness. Br J Cancer 64, 102–107.

    PubMed  CAS  Google Scholar 

  56. Vesalainen, S., Lipponen, P., Talja, M., Alhava, E., Syrjanen, K. (1994) Tumor vascularity and basement membrane structure as prognostic factors in T1–2M0 prostatic adenocarcinoma. AntiCancer Res 14, 709–714.

    PubMed  CAS  Google Scholar 

  57. Van Hoef, M. E., Knox, W. F., Dhesi, S. S., Howell, A., Schor, A. M. (1993) Assessment of tumour vascularity as a prognostic factor in lymph node negative invasive breast cancer. Eur J Cancer 29A, 1141–1145.

    PubMed  CAS  Google Scholar 

  58. Hall, N. R., Fish, D. E., Hunt, N., Goldin, R. D., Guillou, P. J., Monson, J.R. (1992) Is the relationship between angiogenesis and metastasis in breast cancer real? Surg Oncol 1, 223–229.

    PubMed  CAS  Google Scholar 

  59. Ottinetti, A., Sapino, A. (1988) Morphometric evaluation of microvessels surrounding hyperplastic and neoplastic mammary lesions. Breast Cancer Res Treat 11, 241–248.

    PubMed  CAS  Google Scholar 

  60. Bosari, S., Lee, A. K., DeLellis, R. A., Wiley, B. D., Heatley, G. J., Silverman, M. L. (1992) Microvessel quantitation and prognosis in invasive breast carcinoma. Hum Pathol 23, 755–761.

    PubMed  CAS  Google Scholar 

  61. Bundred, N., Bowcott, M., Walls, J., Faragher, E., Knox, F. (1994) Angiogenesis in breast cancer predicts node metastasis and survival [abstract]. Br J Surgery 81, 768.

    Google Scholar 

  62. Li, V. W., Folkerth, R. D., Watanabe, H., (1994) Microvessel count and cerebrospinal fluid basic fibroblast growth factor in children with brain tumours. Lancet 344, 82–86.

    PubMed  CAS  Google Scholar 

  63. Parums, D., Cordell, J., Micklem, K., Heryet, A., Gatter, K., Mason, D. (1990) JC70: a new monoclonal antibody that detects vascular endothelium associated antigen on routinely processed tissue sections. J Clin Pathol 43, 752–757.

    PubMed  CAS  Google Scholar 

  64. Horak, E. R., Harris, A. L., Stuart, N., Bicknell, R. (1993) Angiogenesis in breast cancer. Regulation, prognostic aspects, and implications for novel treatment strategies. Ann N Y Acad Sci 698, 71–84.

    PubMed  CAS  Google Scholar 

  65. Sightler, H., Borowsky, A., Dupont, W., Page, D., Jensen, R. Evaluation (1994) of tumor angiogenesis as a prognostic marker in breast cancer [abstract]. Lab Invest 70, 22A.

    Google Scholar 

  66. Barnhill, R. L., Fandrey, K., Levy, M. A., Mihm, M. J., Hyman, B. (1992) Angiogenesis and tumor progression of melanoma. Quantification of vascularity in melanocytic nevi and cutaneous malignant melanoma. Lab Invest 67, 331–337.

    PubMed  CAS  Google Scholar 

  67. Sahin, A., Sneige, N., Singletary, E., Ayala, A. (1992) Tumor angiogenesis detected by factor-VIII immunostaining in node-negative breast carcinoma (NNBC): a possible predictor of distant metastasis [abstract]. Mod Pathol 5, 17A.

    Google Scholar 

  68. Axelsson, K., Ljung, B. M., Moore, D. H., 2nd, (1995) Tumor angiogenesis as a prognostic assay for invasive ductal breast carcinoma [see comments]. J Natl Cancer Inst 87, 997–1008.

    PubMed  CAS  Google Scholar 

  69. Fox, S. B., Leek, R. D., Smith, K., Hollyer, J., Greenall, M., Harris, A. L. (1994) Tumor angiogenesis in node-negative breast carcinomas—relationship with epidermal growth factor receptor, estrogen receptor, and survival. Breast Cancer Res Treat 29, 109–116.

    PubMed  CAS  Google Scholar 

  70. Hansen, S., Grabau, D. A., Sorensen, F. B., Bak, M., Vach, W., Rose, C. (2000) The prognostic value of angiogenesis by Chalkley counting in a confirmatory study design on 836 breast cancer patients. Clin Cancer Res 6, 139–146.

    PubMed  CAS  Google Scholar 

  71. Dickinson, A. J., Fox, S. B., Persad, R. A., Hollyer, J., Sibley, G. N., Harris, A. L. (1994) Quantification of angiogenesis as an independent predictor of prognosis in invasive bladder carcinomas. Br J Urol 74, 762–766.

    PubMed  CAS  Google Scholar 

  72. Paweletz, N., Knierim, M. (1989) Tumor-related angiogenesis. Crit Rev Oncol Hematol 9, 197–242.

    PubMed  CAS  Google Scholar 

  73. Blood, C. H., Zetter, B. R. (1990) Tumor interactions with the vasculature: angiogenesis and tumor metastasis. Biochim Biophys Acta 1032, 89–118.

    CAS  PubMed  Google Scholar 

  74. Brown, L. F., Berse, B., Jackman, R. W., (1995) Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Hum Pathol 26, 86–91.

    PubMed  CAS  Google Scholar 

  75. Moghaddam, A., Bicknell, R. (1992) Expression of platelet-derived endothelial cell growth factor in Escherichia coli and confirmation of its thymidine phosphorylase activity. Biochemistry 31, 12141–12146.

    PubMed  CAS  Google Scholar 

  76. Anandappa, S. Y., Winstanley, J. H., Leinster, S., Green, B., Rudland, P. S., Barraclough, R. (1994) Comparative expression of fibroblast growth factor mRNAs in benign and malignant breast disease. Br J Cancer 69, 772–776.

    PubMed  CAS  Google Scholar 

  77. Relf, M., LeJeune, S., Scott, P. A., (1997) Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res 57, 963–969.

    PubMed  CAS  Google Scholar 

  78. Garver, R. J., Radford, D. M., Donis, K. H., Wick, M. R., Milner, P. G. (1994) Midkine and pleiotrophin expression in normal and malignant breast tissue. Cancer 74, 1584–1590.

    PubMed  Google Scholar 

  79. Smith, K., Fox, S. B., Whitehouse, R., (1999) Upregulation of basic fibroblast growth factor in breast carcinoma and its relationship to vascular density, oestrogen receptor, epidermal growth factor receptor and survival. Ann Oncol 10, 707–713.

    PubMed  CAS  Google Scholar 

  80. Wong, S. Y., Purdie, A. T., Han, P. (1992) Thrombospondin and other possible related matrix proteins in malignant and benign breast disease. An immunohistochemical study. Am J Pathol 140, 1473–1482.

    PubMed  CAS  Google Scholar 

  81. Visscher, D. W., DeMattia, F., Ottosen, S., Sarkar, F. H., Crissman, J. D. (1995) Biologic and clinical significance of basic fibroblast growth factor immunostaining in breast carcinoma. Mod Pathol 8, 665–670.

    PubMed  CAS  Google Scholar 

  82. Toi, M., Kondo, S., Suzuki, H., (1996) Quantitative analysis of vascular endothelial growth factor in primary breast cancer. Cancer 77, 1101–1106.

    PubMed  CAS  Google Scholar 

  83. Lantzsch, T., Hefler, L., Krause, U., (2002) The correlation between immunohistochemically-detected markers of angiogenesis and serum vascular endothelial growth factor in patients with breast cancer. AntiCancer Res 22, 1925–1928.

    PubMed  CAS  Google Scholar 

  84. Valkovic, T., Dobrila, F., Melato, M., Sasso, F., Rizzardi, C., Jonjic, N. (2002) Correlation between vascular endothelial growth factor, angiogenesis, and tumor-associated macrophages in invasive ductal breast carcinoma. Virchows Arch 440, 583–588.

    PubMed  CAS  Google Scholar 

  85. Linderholm, B., Tavelin, B., Grankvist, K., Henriksson, R. (1998) Vascular endothelial growth factor is of high prognostic value in node- negative breast carcinoma. J Clin Oncol 16, 3121–3128.

    PubMed  CAS  Google Scholar 

  86. Gasparini, G., Toi, M., Gion, M., (1997) Prognostic-significance of vascular endothelial growth-factor protein in node-negative breast-carcinoma. J Natl Cancer Inst 89, 139–147.

    PubMed  CAS  Google Scholar 

  87. Obermair, A., Bancher-Todesca, D., Bilgi, S., (1997) Correlation of vascular endothelial growth factor expression and microvessel density in cervical intraepithelial neoplasia. J Natl Cancer Inst 89, 1212–1217.

    PubMed  CAS  Google Scholar 

  88. Manders, P., Beex, L. V., Tjan-Heijnen, V. C., (2002) The prognostic value of vascular endothelial growth factor in 574 node-negative breast cancer patients who did not receive adjuvant systemic therapy. Br J Cancer 87, 772–778.

    PubMed  CAS  Google Scholar 

  89. Eppenberger, U., Kueng, W., Schlaeppi, J. M., (1998) Markers of tumor angiogenesis and proteolysis independently define high- and low-risk subsets of node-negative breast cancer patients [in process citation]. J Clin Oncol 16, 3129–3136.

    PubMed  CAS  Google Scholar 

  90. Coradini, D., Boracchi, P., Daidone, M. G., (2001) Contribution of vascular endothelial growth factor to the Nottingham prognostic index in node-negative breast cancer. Br J Cancer 85, 795–797.

    PubMed  CAS  Google Scholar 

  91. Toi, M., Bando, H., Ogawa, T., Muta, M., Hornig, C., Weich, H. A. (2002) Significance of vascular endothelial growth factor (VEGF)/soluble VEGF receptor-1 relationship in breast cancer. Int J Cancer 98, 14–18.

    PubMed  CAS  Google Scholar 

  92. Gunningham, S., Currie, M., Cheng, H., (2000) The short form of the alternatively spliced flt-4 but not its ligand VEGF-C is related to lymph node metastasis in human breast cancers. Clin Cancer Res 6, 4278–4286.

    PubMed  CAS  Google Scholar 

  93. Kinoshita, J., Kitamura, K., Kabashima, A., Saeki, H., Tanaka, S., Sugimachi, K. (2001) Clinical significance of vascular endothelial growth factor-C (VEGF-C) in breast cancer. Breast Cancer Res Treat 66, 159–164.

    PubMed  CAS  Google Scholar 

  94. Gunningham, S., Currie, M., Cheng, H., et al. (2000) VEGF-B expression in human breast cancers is associated with positive lymph node status. J Pathol 193, 325–332.

    Google Scholar 

  95. Onogawa, S., Kitadai, Y., Tanaka, S., Kuwai, T., Kimura, S., Chayama, K. (2004) Expression of VEGF-C and VEGF-D at the invasive edge correlates with lymph node metastasis and prognosis of patients with colorectal carcinoma. Cancer Sci 95, 32–39.

    PubMed  CAS  Google Scholar 

  96. Yokoyama, Y., Charnock-Jones, D. S., Licence, D., (2003) Expression of vascular endothelial growth factor (VEGF)-D and its receptor, VEGF receptor 3, as a prognostic factor in endometrial carcinoma. Clin Cancer Res 9, 1361–1369.

    PubMed  CAS  Google Scholar 

  97. Nakamura, Y., Yasuoka, H., Tsujimoto, M., (2003) Prognostic significance of vascular endothelial growth factor D in breast carcinoma with long-term follow-up. Clin Cancer Res 9, 716–721.

    PubMed  CAS  Google Scholar 

  98. Kurebayashi, J., Otsuki, T., Kunisue, H., (1999) Expression of vascular endothelial growth factor (VEGF) family members in breast cancer. Jpn J Cancer Res 90, 977–981.

    PubMed  CAS  Google Scholar 

  99. Engels, K., Fox, S. B., Whitehouse, R. M., Gatter, K. C., Harris, A. L. (1997) Up-regulation of thymidine phosphorylase expression is associated with a discrete pattern of angiogenesis in ductal carcinomas in situ of the breast. J Pathol 182, 414–420.

    PubMed  CAS  Google Scholar 

  100. Fox, S. B., Westwood, M., Moghaddam, A., (1996) The angiogenic factor platelet-derived endothelial cell growth factor/thymidine phosphorylase is up-regulated in breast cancer epithelium and endothelium. Br J Cancer 73, 275–280.

    PubMed  CAS  Google Scholar 

  101. Toi, M., Hoshina, S., Taniguchi, T., (1995) Expression of platelet derived endothelial cell growth factor/thymidine phosphorylase in human breast cancer. Int J Cancer 64, 79–82.

    PubMed  CAS  Google Scholar 

  102. Toi, M., Ueno, T., Matsumoto, H., (1999) Significance of thymidine phosphorylase as a marker of protumor monocytes in breast cancer. Clin Cancer Res 5, 1131–1137.

    PubMed  CAS  Google Scholar 

  103. Yang, Q., Barbareschi, M., Mori, I., (2002) Prognostic value of thymidine phosphorylase expression in breast carcinoma. Int J Cancer 97, 512–517.

    PubMed  CAS  Google Scholar 

  104. Kanzaki, A., Takebayashi, Y., Bando, H., (2002) Expression of uridine and thymidine phosphorylase genes in human breast carcinoma. Int J Cancer 97, 631–635.

    PubMed  CAS  Google Scholar 

  105. Nagaoka, H., Iino, Y., Takei, H., Morishita, Y. (1998) Platelet-derived endothelial cell growth factor/thymidine phosphorylase expression in macrophages correlates with tumor angiogenesis and prognosis in invasive breast cancer. Int J Oncol 13, 449–454.

    PubMed  CAS  Google Scholar 

  106. Toi, M., Yamamoto, Y., Inada, K., (1995) Vascular endothelial growth factor and platelet-derived endothelial growth factor are frequently co-expressed in highly vascularized breast cancer. Clin Cancer Res 1, 961–964.

    PubMed  CAS  Google Scholar 

  107. O’Brien, T., Fox, S., Dickinson, A., (1996) Expression of the angiogenic factor thymidine phosphorylase/platelet derived endothelial cell growth factor in primary bladder cancers. Cancer Res 56, 4799–4804.

    PubMed  Google Scholar 

  108. O’Brien, T. S., Smith, K., Cranston, D., Fuggle, S., Bicknell, R., Harris, A. L. (1995) Urinary basic fibroblast growth factor in patients with bladder cancer and benign prostatic hypertrophy. Br J Urol 76, 311–314.

    PubMed  Google Scholar 

  109. Adams, J., Carder, P. J., Downey, S., (2000) Vascular endothelial growth factor (VEGF) in breast cancer: comparison of plasma, serum, and tissue VEGF and microvessel density and effects of tamoxifen. Cancer Res 60, 2898–2905.

    PubMed  CAS  Google Scholar 

  110. Freeman, A., Morris, L. S., Mills, A. D., (1999) Minichromosome maintenance proteins as biological markers of dysplasia and malignancy. Clin Cancer Res 5, 2121–2132.

    PubMed  CAS  Google Scholar 

  111. Stoeber, K., Swinn, R., Prevost, A. T., (2002) Diagnosis of genito-urinary tract cancer by detection of minichromosome maintenance 5 protein in urine sediments. J Natl Cancer Inst 94, 1071–1079.

    PubMed  CAS  Google Scholar 

  112. Eberhard, A., Kahlert, S., Goede, V., Hemmerlein, B., Plate, K. H., Augustin, H. G. (2000) Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 60, 1388–1393.

    PubMed  CAS  Google Scholar 

  113. Schadendorf, D., Heidel, J., Gawlik, C., Suter, L., Czarnetzki (1995) Association with clinical outcome of expression of VLA-4 in primary cutaneous malignant melanoma as well as P-selectin and E-selectin on intratumoral vessels. J Natl Cancer Inst 87, 366–371.

    PubMed  CAS  Google Scholar 

  114. Kageshita, T., Hamby, C. V., Hirai, S., Kimura, T., Ono, T., Ferrone, S. (2000) Alpha(v)beta3 expression on blood vessels and melanoma cells in primary lesions: differential association with tumor progression and clinical prognosis. Cancer Immunol Immunother 49, 314–318.

    PubMed  CAS  Google Scholar 

  115. Kageshita, T., Yoshii, A., Kimura, T., (1993) Clinical relevance of ICAM-1 expression in prmary lesions and serum of patients with malignant melanoma. Cancer Res 53, 4927–4932.

    PubMed  CAS  Google Scholar 

  116. Banks, R. E., Gearing, A. J., Hemingway, I. K., Norfolk, D. R., Perren, T. J., Selby, P. J. (1993) Circulating intercellular adhesion molecule-1 (ICAM-1), E-selectin and vascular cell adhesion molecule-1 (VCAM-1) in human malignancies. Br J Cancer 68, 122–124.

    PubMed  CAS  Google Scholar 

  117. Brooks, P. C., Stromblad, S., Klemke, R., Visscher, D., Sarkar, F. H., Cheresh, D. A. (1995) Antiintegrin β3αv blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 96, 1815–1822.

    PubMed  CAS  Google Scholar 

  118. Gasparini, G., Brooks, P. C., Biganzoli, E., (1998) Vascular integrin alpha(v)beta3: a new prognostic indicator in breast cancer [in process citation]. Clin Cancer Res 4, 2625–2634.

    PubMed  CAS  Google Scholar 

  119. Pepper, M. S. (2001) Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 21, 1104–1117.

    PubMed  CAS  Google Scholar 

  120. John, A., Tuszynski, G. (2001) The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res 7, 14–23.

    PubMed  CAS  Google Scholar 

  121. Haas, T. L., Madri, J. A. (1999) Extracellular matrix-driven matrix metalloproteinase production in endothelial cells: implications for angiogenesis. Trends Cardiovasc Med 9, 70–77.

    PubMed  CAS  Google Scholar 

  122. Lochter, A., Bissell, M. J. (1999) An odyssey from breast to bone: multi-step control of mammary metastases and osteolysis by matrix metalloproteinases. APMIS 107, 128–136.

    PubMed  CAS  Google Scholar 

  123. Parfyonova, Y. V., Plekhanova, O. S., Tkachuk, V. A. (2002) Plasminogen activators in vascular remodeling and angiogenesis. Biochemistry (Mosc) 67, 119–134.

    CAS  Google Scholar 

  124. Nielsen, B. S., Sehested, M., Kjeldsen, L., Borregaard, N., Rygaard, J., Dano, K. (1997) Expression of matrix metalloprotease-9 in vascular pericytes in human breast cancer. Lab Invest 77, 345–355.

    PubMed  CAS  Google Scholar 

  125. Fox, S., Taylor, M., Grondahl-Hansen, J., Kakolyris, S., Gatter, K., Harris, A. (2001) Plasminogen activator inhibitor-1 as a measure of vascular remodelling in breast cancer. J Pathol 195, 236–243.

    PubMed  CAS  Google Scholar 

  126. Grøndahl-Hansen, J., Christensen, I. J., Rosenquist, C., et al. (1993)High levels of urokinase-type plasminogen activator and its inhibitor PAI-1 in cytosolic extracts of breast carcinomas are associated with poor prognosis. Cancer Res 53, 2513–2521.

    PubMed  Google Scholar 

  127. Grøndahl-Hansen, J., Peters, H. A., van Putten, W. L., (1995) Prognostic significance of the receptor for urokinase plasminogen activator in breast cancer. Clin Cancer Res 1, 1079–1087.

    PubMed  Google Scholar 

  128. Grøndahl-Hansen, J., Hilsenbeck, S. G., Christensen, I. J., Clark, G. M., Osborne, C. K., Brünner, N. (1997) Prognostic significance of PAI-1 and uPA in cytosolic extracts obtained from node-positive breast cancer patients. Breast Cancer Res Treat 43, 153–163.

    PubMed  Google Scholar 

  129. Janicke, F., Pache, L., Schmitt, M., Ulm, K., Thomssen, C., Prechtl, A., Graeff, H. (1994) Both the cytosols and detergent extracts of breast cancer tissues are suited to evaluate the prognostic impact of the urokinase-type plasminogen activator and its inhibitor, plasminogen activator inhibitor type 1. Cancer Res 54, 2527–2530.

    PubMed  CAS  Google Scholar 

  130. Foekens, J. A., Look, M. P., Peters, H. A., van Putten, W. L., Portengen, H., Klijn, J. G. (1995) Urokinase-type plasminogen activator and its inhibitor PAI-1: predictors of poor response to tamoxifen therapy in recurrent breast cancer. J Natl Cancer Inst 87, 751–756.

    PubMed  CAS  Google Scholar 

  131. Duffy, M. J. (2002) Urokinase plasminogen activator and its inhibitor, PAI-1, as prognostic markers in breast cancer: from pilot to level 1 evidence studies. Clin Chem 48, 1194–1197.

    PubMed  CAS  Google Scholar 

  132. Harbeck, N., Schmitt, M., Kates, R. E., (2002) Clinical utility of urokinase-type plasminogen activator and plasminogen activator inhibitor-1 determination in primary breast cancer tissue for individualized therapy concepts. Clin Breast Cancer 3, 196–200.

    PubMed  CAS  Google Scholar 

  133. Warren, B., Greenblatt, M., Kommineni, V. (1972) Tumor angiogenesis: ultrastructure of endothelial cells in mitosis. Br J Exp Pathol 53, 216–224.

    PubMed  CAS  Google Scholar 

  134. Dvorak, H. F., Nagy, J. A., Feng, D., Brown, L. F., Dvorak, A. M. (1999) Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol 237, 97–132.

    PubMed  CAS  Google Scholar 

  135. Vaupel, P., Kallinowski, F., Okunieff, P. (1989) Blood flow, oxygen and nutrient supply, metabolic microenvironment of human tumors: a review. Cancer Res 49, 6449–6465.

    PubMed  CAS  Google Scholar 

  136. Harris, A. L. (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2, 38–47.

    PubMed  CAS  Google Scholar 

  137. Talks, K. L., Turley, H., Gatter, K. C., (2000) The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor- associated macrophages. Am J Pathol 157, 411–421.

    PubMed  CAS  Google Scholar 

  138. Wykoff, C. C., Beasley, N. J., Watson, P. H., (2000) Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res 60, 7075–7083.

    PubMed  CAS  Google Scholar 

  139. Loncaster, J. A., Harris, A. L., Davidson, S. E., (2001) Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Res 61, 6394–6399.

    PubMed  CAS  Google Scholar 

  140. Bos, R., van der Groep, P., Greijer, A. E., (2003) Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer 97, 1573–1581.

    PubMed  Google Scholar 

  141. Swinson, D. E., Jones, J. L., Richardson, D., (2003) Carbonic anhydrase IX expression, a novel surrogate marker of tumor hypoxia, is associated with a poor prognosis in non-small-cell lung cancer. J Clin Oncol 21, 473–482.

    PubMed  CAS  Google Scholar 

  142. Qin, C., Wilson, C., Blancher, C., Taylor, M., Safe, S., Harris, A. L. (2001) Association of ARNT splice variants with estrogen receptor-negative breast cancer, poor induction of vascular endothelial growth factor under hypoxia, poor prognosis. Clin Cancer Res 7, 818–823.

    PubMed  CAS  Google Scholar 

  143. Schindl, M., Schoppmann, S. F., Samonigg, H., (2002) Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin Cancer Res 8, 1831–1837.

    PubMed  CAS  Google Scholar 

  144. Hasebe, T., Sasaki, S., Imoto, S., Mukai, K., Yokose, T., Ochiai, A. (2002) Prognostic significance of fibrotic focus in invasive ductal carcinoma of the breast: a prospective observational study. Mod Pathol 15, 502–516.

    PubMed  Google Scholar 

  145. Hasebe, T., Tsuda, H., Hirohashi, S., (1996) Fibrotic focus in invasive ductal carcinoma: an indicator of high tumor aggressiveness. Jpn J Cancer Res 87, 385–394.

    PubMed  CAS  Google Scholar 

  146. Jitsuiki, Y., Hasebe, T., Tsuda, H., (1999) Optimizing microvessel counts according to tumor zone in invasive ductal carcinoma of the breast. Mod Pathol 12, 492–498.

    PubMed  CAS  Google Scholar 

  147. Colpaert, C., Vermeulen, P., Fox, S., AL., H., Dirix, L., Van Marck, E. (2002) The presence of a fibrotic focus in lymph node-negative breast cancer correlates with expression of carbonic anhydrase IX angiogenesis and is a marker of hypoxia and poor prognosis. J Pathol .

    Google Scholar 

  148. de Jong, J. S., van Diest, P. J., Baak, J. P. (1995) Heterogeneity and reproducibility of microvessel counts in breast cancer. Lab Invest 73, 922–926.

    PubMed  CAS  Google Scholar 

  149. Martin, L., Holcombe, C., Green, B., Leinster, S. J., Winstanley, J. (1997) Is a histological section representative of whole tumour vascularity in breast cancer? Br J Cancer 76, 40–43.

    PubMed  CAS  Google Scholar 

  150. Kononen, J., Bubendorf, L., Kallioniemi, A., (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4, 844–847.

    PubMed  CAS  Google Scholar 

  151. LeBaron, M. J., Crismon, H. R., Utama, F. E., (2005) Ultrahigh density microarrays of solid samples. Nat Methods 2, 511–513.

    PubMed  CAS  Google Scholar 

  152. Generali, D., Buffa, F., Berruti, A., et al. (2006) Phosphorylated ERα, Hif-1α?and MAPK Signaling, as predictors of primary endocrine treatment response and resistance in breast cancer patients. J Clin Oncol 2008 in press.

    Google Scholar 

  153. Liu, X., Minin, V., Huang, Y., Seligson, D. B., Horvath, S. (2004) Statistical methods for analyzing tissue microarray data. J Biopharm Stat 14, 671–685.

    PubMed  Google Scholar 

  154. Zhang, D. H., Salto-Tellez, M., Chiu, L. L., Shen, L., Koay, E. S. (2003) Tissue microarray study for classification of breast tumors. Life Sci 73, 3189–3199.

    PubMed  CAS  Google Scholar 

  155. Protopapa, E., Delides, G. S., Revesz, L. (1993) Vascular density and the response of breast carcinomas to mastectomy and adjuvant chemotherapy. Eur J Cancer 29A, 1141–1145.

    Google Scholar 

  156. Fox, S., Engels, K., Comley, M., et al. (1997) Relationship of elevated tumour thymidine phosphorylase in node positive breast carcinomas to the effects of adjuvant CMF. Annal Oncol 8, 271–275.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fox, S.B. (2009). Assessing Tumor Angiogenesis in Histological Samples. In: Murray, C., Martin, S. (eds) Angiogenesis Protocols. Methods in Molecular Biology, vol 467. Humana Press. https://doi.org/10.1007/978-1-59745-241-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-241-0_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-907-9

  • Online ISBN: 978-1-59745-241-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics