Skip to main content

Creation of Human Skin Equivalents for the In vitro Study of Angiogenesis in Wound Healing

  • Protocol
  • First Online:
Angiogenesis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 467))

Abstract

In our efforts aimed at studying the cellular responses to injury, including the angiogenesis of wound healing, we have developed a novel three-dimensional (3D) skin equivalent that is comprised of multiple cell types found in normal human skin or chronic wound beds. The in vitro model contains a microvascular component within the dermis-like extracellular matrix and possesses an intact epithelial covering comprised of skin-derived epithelial cells. Capillary endothelial cells can be labeled with fluorescent vital tracers prior to being embedded within a 3D matrix and overlaid with a monolayer of keratinocytes (normal or transformed). Once embedded in the matrix, the endothelial cells demonstrate capillary-like tube formation mimicking the microvasculature of true skin. Angiogenesis and the reepithelialization, which occur in response to injury and during wound healing, can be quantified using fluorescence-based and bright-field digital imaging microscopic, biochemical, or molecular approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Odland, G., Ross, R. (1968) Human wound repair. I. Epidermal regeneration. J Cell Biol 39, 135–151.

    Article  Google Scholar 

  2. Abraham, J. A., Klagsbrun, M. (1996) Modulation of wound repair by members of the fibroblast growth factor family. Mol Cell Biol Wound Repair 195–248.

    Google Scholar 

  3. Cross, K. J., Mustoe, T. A. (2003) Growth factors in wound healing. Surg Clin North Am 83, 531–545.

    Article  PubMed  Google Scholar 

  4. Stadelmann, W. K., Digenis, A. G., Tobin, G. R. (1998) Physiology and healing dynamics of chronic cutaneous wounds. Am J Surg 176, 26S–38S.

    Article  PubMed  CAS  Google Scholar 

  5. Marikovsky, M., Breuing, K., Liu, P. Y., (1993) Appearance of heparin-binding EGF-like growth factor in wound fluid as a response to injury. Proc Natl Acad Sci U S A 90, 3889–3893.

    Article  PubMed  CAS  Google Scholar 

  6. Marikovsky, M., Vogt, P., Eriksson, E., (1996) Wound fluid-derived heparin-binding EGF-like growth factor (HB-EGF) is synergistic with insulin-like growth factor-I for Balb/MK keratinocyte proliferation. J Invest Dermatol 106, 616–621.

    Article  PubMed  CAS  Google Scholar 

  7. Papetti, M., Herman, I. M. (2002) Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol 282, C947–C970.

    PubMed  CAS  Google Scholar 

  8. Galeano, M., Altavilla, D., Cucinotta, D., (2004) Recombinant human erythropoietin stimulates angiogenesis and wound healing in the genetically diabetic mouse. Diabetes 53, 2509–2517.

    Article  PubMed  CAS  Google Scholar 

  9. I. M. Herman, (2006) Pericytes and microvascular morphogenesis, in D ed., Shepro, Encyclopedia of the Microvasculature Elsevier, New York, pp. 111–115.

    Google Scholar 

  10. Crocker, D. J., Murad, T. M., Geer, J. C. (1970) Role of the pericyte in wound healing. An ultrastructural study. Exp Mol Pathol. 13, 51–65.

    Article  PubMed  CAS  Google Scholar 

  11. D’Amore, P. A., Herman, I. M. (2001) Molecular and cellular control of angiogenesis, in (Arias, I. M., ed.) The Liver. Plenum University Press, New York.

    Google Scholar 

  12. Kolyada, A., Riley, K., Herman, I. M. (2003) Rho GTPase regulates cell shape and contractile phenotype in an isoactin-specific manner. Am J Physiol 285, 1116–1121.

    Google Scholar 

  13. Hirschi, K. K., Rohovsky, S. A., Beck, L. H., Smith, S. R., D’Amore, P. A. (1999) Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circ Res 84, 298–305.

    PubMed  CAS  Google Scholar 

  14. Hirschi, K. K., Rohovsky, S. A., D’Amore, P. A. (1998) PDGF-BB, TGFβ, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141, 805–814.

    Article  PubMed  CAS  Google Scholar 

  15. Hellstrom, M., Kalen, M., Lindahl, P., Abramsson, A., Betsholtz, C. (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126, 3047–3055.

    PubMed  CAS  Google Scholar 

  16. Sieczkiewicz, G. J., Herman, I. M. (2003) TGFβ1 signaling controls retinal pericyte contractile protein expression. Microvasc Res 66, 190–196.

    Article  PubMed  CAS  Google Scholar 

  17. Antonelli-Orlidge, A., Saunders, K. B., Smith, S. R., D’Amore, P. A. (1989) An activated form of transforming growth factor β is produced by cocultures of endothelial cells and pericytes. Proc Natl Acad Sci U S A 86, 4544–4548.

    Article  PubMed  CAS  Google Scholar 

  18. Newcomb, P. M., Herman, I. M. (1993) Pericyte growth and contractile phenotype: modulation by endothelial-synthesized matrix and comparison with aortic smooth muscle. J Cell Physiol 155, 385–393.

    Article  PubMed  CAS  Google Scholar 

  19. Suri, C., Jones, P. F., Patan, S., (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87, 1171–1180.

    Article  PubMed  CAS  Google Scholar 

  20. Herman, I. M., D’Amore, P. A. (1985) Microvascular pericytes contain muscle and nonmuscle actins. J Cell Biol 101, 43–52.

    Article  PubMed  CAS  Google Scholar 

  21. Herman, I. M., Jacobson, S. (1988) In situ analysis of microvascular pericytes in hypertensive rat brains. Tissue Cell 20, 1–12.

    Article  PubMed  CAS  Google Scholar 

  22. Helmbold, P., Nayak, R. C., Marsch, W., Herman, I. M. (2001) Characterization of clonal human dermal microvascular pericytes. Microvasc Res 61, 160–166.

    Article  PubMed  CAS  Google Scholar 

  23. Riley, K. N., Herman, I. M. (2005) Collagenase promotes the response wound healing in vivo. J Burns Wounds 4, 141–59.

    Google Scholar 

Download references

Acknowledgments

Studies described in this chapter were supported in part by NIH EY15125, NIH EY 09033, and GM 55110 (I. M. H.) and a Williams Research Fellowship (A. L.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Herman, I., Leung, A. (2009). Creation of Human Skin Equivalents for the In vitro Study of Angiogenesis in Wound Healing. In: Murray, C., Martin, S. (eds) Angiogenesis Protocols. Methods in Molecular Biology, vol 467. Humana Press. https://doi.org/10.1007/978-1-59745-241-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-241-0_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-907-9

  • Online ISBN: 978-1-59745-241-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics