Skip to main content

Retroviral-Mediated Gene Therapy for the Differentiation of Primary Cells into a Mineralizing Osteoblastic Phenotype

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 433))

Summary

Bone tissue engineering has emerged as a promising strategy for the repair of critical-sized skeletal fractures. However, the clinical application of this approach has been limited by the availability of a robust mineralizing cell source. Non-osteogenic cells, such as skin fibroblasts, are an attractive cell-source alternative because they are easy to harvest from autologous donor skin biopsies and display a high capacity for in vitro expansion. We have recently demonstrated that retroviral gene delivery of the osteoblastic transcription factor Runx2/Cbfa1 promotes osteogenic differentiation in primary dermal fibroblasts cultured in monolayer. Notably, sustained expression of Runx2 was not sufficient to promote functional osteogenesis in these cells, and co-treatment with the steroid hormone dexamethasone was required to induce deposition of biologically-equivalent matrix mineralization. On the basis of these results, we then investigated the osteogenic capacity of these genetically engineered fibroblasts when seeded on polymeric scaffolds in vitro and in vivo. These experiments demonstrated that Runx2-expressing fibroblasts seeded on collagen scaffolds produce significant levels of matrix mineralization after 28 days in vivo implantation in a subcutaneous, heterotopic site. Overall, these results offer evidence that transcription factor-based gene therapy may be a powerful strategy for the conversion of a non-osteogenic cellular phenotype into a mineralizing cell source for bone repair applications. This concept may also be applied to control functional differentiation in a broad range of cell types and tissue engineering applications. The chapter below outlines detailed methods for the isolation and ex vivo genetic modification of primary dermal fibroblasts using retroviral-mediated delivery of the Runx2 transgene in both monolayer culture and three-dimensional scaffolds.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lane, J. M., Tomin, E. and Bostrom, M. P. (1999) Biosynthetic bone grafting. Clin. Orthop. Relat. Res. S107–S117.

    Google Scholar 

  2. Bostrom, M. P., Saleh, K. J. and Einhorn, T. A. (1999) Osteoinductive growth factors in preclinical fracture and long bone defects models. Orthop. Clin. North Am. 30, 647–658.

    Article  CAS  PubMed  Google Scholar 

  3. Bucholz, R. W. (2002) Nonallograft osteoconductive bone graft substitutes. Clin. Orthop. Relat. Res. 44–52.

    Google Scholar 

  4. Finkemeier, C. G. (2002) Bone-grafting and bone-graft substitutes. J. Bone Joint Surg. Am. 84-A, 454–464.

    PubMed  Google Scholar 

  5. Khan, S. N., Tomin, E. and Lane, J. M. (2000) Clinical applications of bone graft substitutes. Orthop. Clin. North Am. 31, 389–398.

    Article  CAS  PubMed  Google Scholar 

  6. Perry, C. R. (1999) Bone repair techniques, bone graft, and bone graft substitutes. Clin. Orthop. Relat. Res. 71–86.

    Google Scholar 

  7. Vaccaro, A. R. (2002) The role of the osteoconductive scaffold in synthetic bone graft. Orthopedics 25, s571–s578.

    PubMed  Google Scholar 

  8. Friedlaender, G. E., Perry, C. R., Cole, J. D., Cook, S. D., Cierny, G., Muschler, G. F., Zych, G. A., Calhoun, J. H., LaForte, A. J. and Yin, S. (2001) Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J. Bone Joint Surg. Am. 83-A Suppl 1, S151–S158.

    CAS  PubMed  Google Scholar 

  9. Geesink, R. G., Hoefnagels, N. H. and Bulstra, S. K. (1999) Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in a human fibular defect. J. Bone Joint Surg. Br. 81, 710–718.

    Article  CAS  PubMed  Google Scholar 

  10. Johnson, E. E., Urist, M. R. and Finerman, G. A. (1988) Bone morphogenetic protein augmentation grafting of resistant femoral nonunions. A preliminary report. Clin. Orthop. Relat. Res. 257–265.

    Google Scholar 

  11. Wozney, J. M. (2002) Overview of bone morphogenetic proteins. Spine 27, S2–S8.

    Article  PubMed  Google Scholar 

  12. Uludag, H., Gao, T., Porter, T. J., Friess, W. and Wozney, J. M. (2001) Delivery systems for BMPs: factors contributing to protein retention at an application site. J. Bone Joint. Surg. Am. 83-A Suppl 1, S128–S135.

    CAS  PubMed  Google Scholar 

  13. Bruder, S. P. and Fox, B. S. (1999) Tissue engineering of bone. Cell based strategies. Clin. Orthop. Relat. Res. S68–S83.

    Google Scholar 

  14. Calvert, J. W., Weiss, L. E. and Sundine, M. J. (2003) New frontiers in bone tissue engineering. Clin. Plast. Surg. 30, 641–648, x.

    Article  PubMed  Google Scholar 

  15. Cowan, C. M., Soo, C., Ting, K. and Wu, B. (2005) Evolving concepts in bone tissue engineering. Curr. Top. Dev. Biol. 66, 239–285.

    Article  CAS  PubMed  Google Scholar 

  16. Mistry, A. S. and Mikos, A. G. (2005) Tissue engineering strategies for bone regeneration. Adv. Biochem. Eng. Biotechnol. 94, 1–22.

    PubMed  Google Scholar 

  17. Arinzeh, T. L., Peter, S. J., Archambault, M. P., van den, B. C., Gordon, S., Kraus, K., Smith, A. and Kadiyala, S. (2003) Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J. Bone Joint Surg. Am. 85-A, 1927–1935.

    PubMed  Google Scholar 

  18. Bruder, S. P., Fink, D. J. and Caplan, A. I. (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J. Cell Biochem. 56, 283–294.

    Article  CAS  PubMed  Google Scholar 

  19. Mauney, J. R., Volloch, V. and Kaplan, D. L. (2005) Role of adult mesenchymal stem cells in bone tissue engineering applications: current status and future prospects. Tissue Eng. 11, 787–802.

    Article  CAS  PubMed  Google Scholar 

  20. Kahn, A., Gibbons, R., Perkins, S. and Gazit, D. (1995) Age-related bone loss. A hypothesis and initial assessment in mice. Clin. Orthop. Relat. Res. 69–75.

    Google Scholar 

  21. Ohgushi, H., Goldberg, V. M. and Caplan, A. I. (1989) Repair of bone defects with marrow cells and porous ceramic. Experiments in rats. Acta Orthop. Scand. 60, 334–339.

    Article  CAS  PubMed  Google Scholar 

  22. Quarto, R., Mastrogiacomo, M., Cancedda, R., Kutepov, S. M., Mukhachev, V., Lavroukov, A., Kon, E. and Marcacci, M. (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N. Engl. J. Med. 344, 385–386.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, J. C., Kanim, L. E., Yoo, S., Campbell, P. A., Berk, A. J. and Lieberman, J. R. (2003) Effect of regional gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats. J. Bone Joint Surg. Am. 85-A, 905–911.

    PubMed  Google Scholar 

  24. Lieberman, J. R., Le, L. Q., Wu, L., Finerman, G. A., Berk, A., Witte, O. N. and Stevenson, S. (1998) Regional gene therapy with a BMP-2-producing murine stromal cell line induces heterotopic and orthotopic bone formation in rodents. J. Orthop. Res. 16, 330–339.

    Article  CAS  PubMed  Google Scholar 

  25. Lieberman, J. R., Daluiski, A., Stevenson, S., Wu, L., McAllister, P., Lee, Y. P., Kabo, J. M., Finerman, G. A., Berk, A. J. and Witte, O. N. (1999) The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. J. Bone Joint Surg. Am. 81, 905–917.

    CAS  PubMed  Google Scholar 

  26. Blum, J. S., Barry, M. A., Mikos, A. G. and Jansen, J. A. (2003) In vivo evaluation of gene therapy vectors in ex vivo-derived marrow stromal cells for bone regeneration in a rat critical-size calvarial defect model. Hum. Gene Ther. 14, 1689–1701.

    Article  CAS  PubMed  Google Scholar 

  27. Park, J., Ries, J., Gelse, K., Kloss, F., von der, M. K., Wiltfang, J., Neukam, F. W. and Schneider, H. (2003) Bone regeneration in critical size defects by cell-mediated BMP-2 gene transfer: a comparison of adenoviral vectors and liposomes. Gene Ther. 10, 1089–1098.

    Article  CAS  PubMed  Google Scholar 

  28. Chang, S. C., Chuang, H. L., Chen, Y. R., Chen, J. K., Chung, H. Y., Lu, Y. L., Lin, H. Y., Tai, C. L. and Lou, J. (2003) Ex vivo gene therapy in autologous bone marrow stromal stem cells for tissue-engineered maxillofacial bone regeneration. Gene Ther. 10, 2013–2019.

    Article  CAS  PubMed  Google Scholar 

  29. Gysin, R., Wergedal, J. E., Sheng, M. H., Kasukawa, Y., Miyakoshi, N., Chen, S. T., Peng, H., Lau, K. H., Mohan, S. and Baylink, D. J. (2002) Ex vivo gene therapy with stromal cells transduced with a retroviral vector containing the BMP4 gene completely heals critical size calvarial defect in rats. Gene Ther. 9, 991–999.

    Article  CAS  PubMed  Google Scholar 

  30. Bruder, S. P. and Fox, B. S. (1999) Tissue engineering of bone. Cell based strategies. Clin. Orthop. Relat. Res. S68–S83.

    Google Scholar 

  31. Haynesworth, S. E., Goshima, J., Goldberg, V. M. and Caplan, A. I. (1992) Characterization of cells with osteogenic potential from human marrow. Bone 13, 81–88.

    Article  CAS  PubMed  Google Scholar 

  32. Bruder, S. P., Jaiswal, N. and Haynesworth, S. E. (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J. Cell Biochem. 64, 278–294.

    Article  CAS  PubMed  Google Scholar 

  33. Quarto, R., Thomas, D. and Liang, C. T. (1995) Bone progenitor cell deficits and the age-associated decline in bone repair capacity. Calcif. Tissue Int. 56, 123–129.

    Article  CAS  PubMed  Google Scholar 

  34. Harada, S. and Rodan, G. A. (2003) Control of osteoblast function and regulation of bone mass. Nature 423, 349–355.

    Article  CAS  PubMed  Google Scholar 

  35. Ryoo, H. M., Lee, M. H. and Kim, Y. J. (2006) Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene 366, 51–57.

    Article  CAS  PubMed  Google Scholar 

  36. Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L. and Karsenty, G. (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89, 747–754.

    Article  CAS  PubMed  Google Scholar 

  37. Ishida, Y. and Heersche, J. N. M. (1998) Glucocorticoid-induced osteoporosis: both in vivo and in vitro concentrations of glucocorticoids higher than physiological levels attenuate osteoblast differentiation. J. Bone Miner. Res. 13, 1822–1826.

    Article  CAS  PubMed  Google Scholar 

  38. Canalis, E. and Delany, A. M. (2002) Mechanisms of glucocorticoid action in bone. Ann. N Y Acad. Sci. 966, 73–81.

    Article  CAS  PubMed  Google Scholar 

  39. Bellows, C. G., Aubin, J. E. and Heersche, J. N. M. (1987) Physiological concentrations of glucocorticoids stimulate formation of bone nodules from isolated rat calvaria cells – in vitro. Endocrinology 121, 1985–1992.

    Article  CAS  PubMed  Google Scholar 

  40. Cheng, S. L., Yang, J. W., Rifas, L., Zhang, S. F. and Avioli, L. V. (1994) Differentiation of human bone-marrow osteogenic stromal cells in vitro – induction of the osteoblast phenotype by dexamethasone. Endocrinology 134, 277–286.

    Article  CAS  PubMed  Google Scholar 

  41. Brann, D. W., Hendry, L. B. and Mahesh, V. B. (1995) Emerging diversities in the mechanism of action of steroid-hormones. J. Steroid Biochem. Mol. Biol. 52, 113–133.

    Article  CAS  PubMed  Google Scholar 

  42. Boyan, B. D. and Schwartz, Z. (2004) Rapid vitamin D-dependent PKC signaling shares features with estrogen-dependent PKC signaling in cartilage and bone. Steroids 69, 591–597.

    Article  CAS  PubMed  Google Scholar 

  43. Chen, T. L., Cone, C. M. and Feldman, D. (1983) Glucocorticoid modulation of cell-proliferation in cultured osteoblast-like bone-cells – differences between rat and mouse. Endocrinology. 112, 1739–1745.

    Article  CAS  PubMed  Google Scholar 

  44. Rickard, D. J., Sullivan, T. A., Shenker, B. J., Leboy, P. S. and Kazhdan, I. (1994) Induction of rapid osteoblast differentiation in rat bone-marrow stromal cell-cultures by dexamethasone and Bmp-2. Dev. Biol. 161, 218–228.

    Article  PubMed  Google Scholar 

  45. Prince, M., Banerjee, C., Javed, A., Green, J., Lian, J. B., Stein, G. S., Bodine, P. V. and Komm, B. S. (2001) Expression and regulation of Runx2/Cbfa1 and osteoblast phenotypic markers during the growth and differentiation of human osteoblasts. J. Cell Biochem. 80, 424–440.

    Article  CAS  PubMed  Google Scholar 

  46. Viereck, V., Siggelkow, H., Tauber, S., Raddatz, D., Schutze, N. and Hufner, M. (2002) Differential regulation of Cbfa1/Runx2 and osteocalcin gene expression by vitamin-D3, dexamethasone, and local growth factors in primary human osteoblasts. J. Cell Biochem. 86, 348–356.

    Article  CAS  PubMed  Google Scholar 

  47. Pei, W., Yoshimine, Y. and Heersche, J. N. M. (2003) Identification of dexamethasone-dependent osteoprogenitors in cell populations derived from adult human female bone. Calcif. Tissue Int. 72, 124–134.

    Article  CAS  PubMed  Google Scholar 

  48. Shui, C. X., Spelsberg, T. C., Riggs, B. L. and Khosla, S. (2003) Changes in Runx2/Cbfa1 expression and activity during osteoblastic differentiation of human bone marrow stromal cells. J. Bone Miner. Res. 18, 213–221.

    Article  CAS  PubMed  Google Scholar 

  49. Franceschi, R. T., Yang, S., Rutherford, R. B., Krebsbach, P. H., Zhao, M. and Wang, D. (2004) Gene therapy approaches for bone regeneration. Cells Tissues Organs 176, 95–108.

    Article  CAS  PubMed  Google Scholar 

  50. Rutherford, R. B., Moalli, M., Franceschi, R. T., Wang, D., Gu, K. and Krebsbach, P. H. (2002) Bone morphogenetic protein-transduced human fibroblasts convert to osteoblasts and form bone in vivo. Tissue Eng. 8, 441–452.

    Article  CAS  PubMed  Google Scholar 

  51. Zhao, M., Zhao, Z., Koh, J. T., Jin, T. and Franceschi, R. T. (2005) Combinatorial gene therapy for bone regeneration: cooperative interactions between adenovirus vectors expressing bone morphogenetic proteins 2, 4, and 7. J. Cell Biochem. 95, 1–16.

    Article  CAS  PubMed  Google Scholar 

  52. Yang, S., Wei, D., Wang, D., Phimphilai, M., Krebsbach, P. H. and Franceschi, R. T. (2003) In vitro and in vivo synergistic interactions between the Runx2/Cbfa1 transcription factor and bone morphogenetic protein-2 in stimulating osteoblast differentiation. J. Bone Miner. Res. 18, 705–715.

    Article  CAS  PubMed  Google Scholar 

  53. Hirata, K., Tsukazaki, T., Kadowaki, A., Furukawa, K., Shibata, Y., Moriishi, T., Okubo, Y., Bessho, K., Komori, T., Mizuno, A. et al. (2003) Transplantation of skin fibroblasts expressing BMP-2 promotes bone repair more effectively than those expressing Runx2. Bone. 32, 502–512.

    Article  CAS  PubMed  Google Scholar 

  54. Krebsbach, P. H., Gu, K., Franceschi, R. T. and Rutherford, R. B. (2000) Gene therapy-directed osteogenesis: BMP-7-transduced human fibroblasts form bone in vivo. Hum. Gene Ther. 11, 1201–1210.

    Article  CAS  PubMed  Google Scholar 

  55. Byers, B. A., Pavlath, G. K., Murphy, T. J., Karsenty, G. and Garcia, A. J. (2002) Cell-type-dependent up-regulation of in vitro mineralization after overexpression of the osteoblast-specific transcription factor Runx2/Cbfal. J. Bone Miner. Res. 17, 1931–1944.

    Article  CAS  PubMed  Google Scholar 

  56. Byers, B. A. and Garcia, A. J. (2004) Exogenous Runx2 expression enhances in vitro osteoblastic differentiation and mineralization in primary bone marrow stromal cells. Tissue Eng. 10, 1623–1632.

    Article  CAS  PubMed  Google Scholar 

  57. Byers, B. A., Guldberg, R. E. and Garcia, A. J. (2004) Synergy between genetic and tissue engineering: Runx2 overexpression and in vitro construct development enhance in vivo mineralization. Tissue Eng. 10, 1757–1766.

    Article  CAS  PubMed  Google Scholar 

  58. Gersbach, C. A., Byers, B. A., Pavlath, G. K. and Garcia, A. J. (2004) Runx2/Cbfa1 stimulates transdifferentiation of primary skeletal myoblasts into a mineralizing osteoblastic phenotype. Exp. Cell Res. 300, 406–417.

    Article  CAS  PubMed  Google Scholar 

  59. Phillips, J. E., Gersbach, C. A., Wojtowicz, A. M. and Garcia, A. J. (2006) Glucocorticoid-induced osteogenesis is negatively regulated by Runx2/Cbfa1 serine phosphorylation. J. Cell Sci. 119, 581–591.

    Article  CAS  PubMed  Google Scholar 

  60. Phillips, J. E., Guldberg, R. E. and Garcia, A. J. (2007). Dermal fibroblasts genetically modified to express Runx2/Cbfa1 are a mineralizing cell source for bone tissue engineering applications. 13, 2029–2040.

    Google Scholar 

  61. Phillips, J. E., Guldberg, R. E. and Garcia, A. J. (2006). Mineralization capacity of Runx2/Cbfa1-expressing fibroblasts is scaffold-dependent. Biomaterials. 27, 5535-5545.

    Article  CAS  PubMed  Google Scholar 

  62. Gersbach, C. A., Byers, B. A., Pavlath, G. K., Guldberg, R. E. and Garcia, A. J. (2004) Runx2/Cbfa1-genetically engineered skeletal myoblasts mineralize collagen scaffolds in vitro. Biotechnol. Bioeng. 88, 369–378.

    Article  CAS  PubMed  Google Scholar 

  63. Sauer, G. R. and Wuthier, R. E. (1988) Fourier transform infrared characterization of mineral phases formed during induction of mineralization by collagenase-released matrix vesicles in vitro. J. Biol. Chem. 263, 13718–13724.

    CAS  PubMed  Google Scholar 

  64. Boskey, A. L., Guidon, P., Doty, S. B., Stiner, D., Leboy, P. and Binderman, I. (1996) The mechanism of beta-glycerophosphate action in mineralizing chick limb-bud mesenchymal cell cultures. J. Bone Miner. Res. 11, 1694–1702.

    Article  CAS  PubMed  Google Scholar 

  65. Boyan, B. D., Schwartz, Z. and Boskey, A. L. (2000) The importance of mineral in bone and mineral research. Bone 27, 341–342.

    Article  CAS  PubMed  Google Scholar 

  66. Bonewald, L. F., Harris, S. E., Rosser, J., Dallas, M. R., Dallas, S. L., Camacho, N. P., Boyan, B. and Boskey, A. (2003) von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation. Calcif. Tissue Int. 72, 537–547.

    Article  CAS  PubMed  Google Scholar 

  67. Bonewald, L. F., Dallas, S., Qiao, M., Camacho, N. P., Boyan, B. and Boskey, A. (1996) Comparison of mineralized matrix of fetal rat calvarial cells and MC-3T3-E1 osteoblast-like cells by Fourier transform infrared spectroscopy (FT-IR). J. Bone Miner. Res. 11, S333.

    Google Scholar 

Download references

Acknowledgments

Collagen scaffolds were generously donated by Kensey Nash Corporation. This research was funded by the NIH (R01-EB003364), the Georgia Tech/Emory Engineering Research Center on the Engineering of Living Tissues (NSF EEC-9731643), the Emory-Georgia Tech Biomedical Technology Research Center, and a National Science Foundation Graduate Research Fellowship to J.E.P.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Phillips, J.E., García, A.J. (2008). Retroviral-Mediated Gene Therapy for the Differentiation of Primary Cells into a Mineralizing Osteoblastic Phenotype. In: Gene Therapy Protocols. Methods in Molecular Biology™, vol 433. Humana Press. https://doi.org/10.1007/978-1-59745-237-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-237-3_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-903-1

  • Online ISBN: 978-1-59745-237-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics